Christine Disteche, PhD (Pathology)
Research in my lab focuses on the regulation of the mammalian X chromosome.

Cecilia Giachelli, PhD (Bioengineering)
My lab is interested in applying stem cell and regenerative medicine strategies to the areas of ectopic calcification, tissue engineering, biomaterials development and biocompatibility.

Marshall Horwitz, MD, PhD (Pathology)
The Horwitz laboratory has a longstanding interest in genes and mechanisms leading to hematological malignancy. More recently, the lab has focused attention on using somatic mutations to infer cell lineage in order to better understand how stem cells contribute to development, tissue regeneration, and cancer.

David Kimelman, PhD (Biochemistry)
This lab dissects the formation of mesodermal progenitor cells in zebrafish as a model organism, focusing on how these cells form the trunk and tail.

Akio Kobayashi, PhD (Nephrology)
The primary interest of the Kobayashi laboratory is to understand the cellular and molecular regulatory mechanisms leading to the establishment of the mammalian kidney using the mouse as a model system. The laboratory also focuses on understanding the genes that are involved in reprogramming kidney cell types so that it can be ultimately possible to restore kidney function in patients with kidney disease, ultimately eliminating the need for dialysis or renal transplantation.

Ronald Kwon (Orthopaedics and Sports Medicine)
Our lab is focused on skeletal disease and regeneration. We are understanding the genetic basis of osteoporosis, and identifying new therapeutic targets to combat this massive health burden. We are also understanding why certain organisms such as fish are able to regenerate bony appendages following amputation, and how to mount this response in the digits and limbs of mammals.

The Musculoskeletal Systems Biology Lab comprises engineers, basic scientists, and clinicians. Our focus is on taking bold, innovative approaches to reverse aging-induced bone fragility, and to help realize human regenerative potential.”

David W. Raible, PhD (Biological Structure)
We are interested in the development of the peripheral nervous system using zebrafish as a model. Current research focuses on two areas: sensory neurons derived from neural crest and the mechanosensory lateral line system.

Jason G. Smith, PhD (Microbiology)
Our laboratory cultures enteroid “mini guts” from adult intestinal epithelial stem cells to study the genetics of inflammatory bowel disease (IBD), Paneth cell development and function, and host pathogen interactions in the gut.

Valeri Vasioukhin (Fred Hutch)
Our laboratory studies the mechanisms and significance of cell polarity and cell adhesion in normal mammalian development and cancer.

Li Xin (Urology)
We are interested in using the prostate as a tissue model to study the molecular and cellular mechanisms that regulate development, tissue homeostasis and carcinogenesis. Currently, there are two major research focuses in the lab. The first research focus is to characterize the prostate epithelial lineage hierarchy. We seek to investigate how individual prostate epithelial lineages are maintained in adults by prostate stem cells or progenitors, and to identify master regulators that control adult prostate homeostasis. Cells of origin for tumor can dictate the clinical behaviors of the resulting diseases. Investigating the normal prostate lineage hierarchy serves as a prerequisite to understanding the cells of origin for prostate cancer, which will ultimately help understand the cellular basis for the aggressive prostate cancer. The second focus of the lab is to investigate the molecular mechanisms underlying the initiation and progression of the prostate related diseases including prostate cancer and benign prostatic hyperplasia.  We are interested in determining the function of genetic changes or altered signaling that are associated with these diseases using genetically engineered mouse models. This work will inspire novel prognostic markers and therapeutic targets for these diseases.