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Cancers that appear pathologically similar often respond differently to the same drug regi-

mens. Methods to better match patients to drugs are in high demand. We demonstrate a

promising approach to identify robust molecular markers for targeted treatment of acute

myeloid leukemia (AML) by introducing: data from 30 AML patients including genome-wide

gene expression profiles and in vitro sensitivity to 160 chemotherapy drugs, a computational

method to identify reliable gene expression markers for drug sensitivity by incorporating

multi-omic prior information relevant to each gene’s potential to drive cancer. We show that

our method outperforms several state-of-the-art approaches in identifying molecular markers

replicated in validation data and predicting drug sensitivity accurately. Finally, we identify

SMARCA4 as a marker and driver of sensitivity to topoisomerase II inhibitors, mitoxantrone,

and etoposide, in AML by showing that cell lines transduced to have high SMARCA4

expression reveal dramatically increased sensitivity to these agents.
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T
he research and development process for new drugs
remains challenging and expensive. Nonetheless, the
repertoire of potential cancer drugs continues to expand,

with more than 1200 cancer medicines in clinical development in
the U.S.1. However, cancers that appear pathologically similar
often respond differently to the same drug regimens. Thus,
methods to better match patients to the existing chemotherapy
drugs are in high demand.

The growing availability of genome-wide expression data and
in vitro drug sensitivity data from cancer cell lines has enabled a
data-driven approach to identifying molecular markers by finding
robust statistical associations between genes and drugs. The
Cancer Genome Project (CGP) tested 130 drugs in 639 cell lines,
with a mean of 368 cell lines tested for each drug2. The Cancer
Cell Line Encyclopedia (CCLE) tested 479 cell lines for sensitivity
against a panel of 24 drugs3. These studies employed a penalized
(elastic net) regression method4 to identify novel associations
between gene expression levels and drug sensitivity measures.
While both CGP and CCLE evaluated large numbers of cell lines,
some of the most interesting associations were detected by
focusing analyzes within, rather than across, tumor types. Con-
sistent with this, a study by Heiser et al.5 was able to identify
novel associations using a much smaller panel of 49 breast cancer
cell lines with sensitivity to a panel of 77 compounds.

This paper presents in vitro drug response profiles for 160
chemotherapy drugs along with genome-wide gene expression
from 30 patients with acute myeloid leukemia (AML) (Supple-
mentary Data 1). For AML, publicly available data from CGP and
CCLE include only 14 cell lines. Conventionally, one tests for
associations between gene expression levels and drug sensitivity
measures by: (1) measuring pairwise association between each
gene and each drug, or (2) performing a penalized regression for
each drug using all genes as potential molecular markers, as was
done in the CCLE and CGP drug sensitivity studies (Fig. 1a).
However, drug response could be associated with gene expres-
sions that do not reflect the underlying drug’s biological
mechanism (i.e., false positive associations), and therefore, results
often do not replicate in another data set6. This discrepancy can
happen due to biological confounders (disease subtypes or het-
erogeneity), experimental confounders (sample ascertainment),
or technical confounders (e.g., batch effects). Previous studies also
raised concerns with respect to drug sensitivity assay robustness7.
The high-dimensionality of data (i.e., when the number of gene-
drug pairs greatly exceeds the number of samples) increases the
multiple hypothesis testing burden and the chance of false posi-
tive gene-drug associations.

Successful attempts to reduce false positives by incorporating
prior information have occurred in genome-wide association
studies. Li et al.8 proposed a prioritized subset analysis: they pre-
selected a prioritized subset of single-nucleotide polymorphisms
(SNPs) from candidate genes or regions and applied false dis-
covery rate (FDR) correction within this subset to make it more
likely that these SNPs would be selected. Roeder et al.9 and
Genovese et al.10 up- or down- weighted the association p-value
for each SNP, and the resulting weighted p-values were subse-
quently used in FDR corrections; the p-values of SNPs with sig-
nificant associations in prior linkage analyzes were lowered.
Although these methods increase the power to detect causal SNPs
in genome-wide association studies, they do not apply when it is
not obvious how to define candidate genes or prioritize a subset
of genes, especially when multiple sources of prior information
are available.

One simple way to use prioritized subset analysis8 considers
the genes frequently mutated in AML as candidate genes. How-
ever, relying on only mutation information is unlikely to prove
successful. Many cancer mutations are passengers (i.e., not

drivers), and some genes’ driver roles may not be reflected in
mutation data but in other data types, such as epigenomic, copy
number variation (CNV) and even gene expression data. For
example, our prior study11 suggested that hub genes in a gene
network inferred purely based on gene expression data might
indicate tumor driver events. To reliably identify gene expression
markers for drug response, we must precisely determine how
much each piece of relevant prior information contributes to the
gene’s marker potential.

We present MERGE (mutation, expression hubs, known reg-
ulators, genomic CNV, and methylation), a novel computational
method that identifies reliable gene expression markers using a
principled way of integrating multi-omic prior information
relevant to disease processes (Fig. 1b). MERGE learns from data
how much each of the following driver features contributes to
genes’ potentials to drive cancer progression: (1) mutations based
on the AML study from The Cancer Genome Atlas (TCGA)12, (2)
hubness in a gene expression network inferred from publicly
available expression data sets, (3) the gene’s known regulatory
role based on gene annotation databases13, (4) genomic CNV
status based on the AML study from TCGA, and (5) methylation
status based on the AML study from TCGA. We model each
gene’s marker potential (i.e., the prior probability that the gene is
a reliable molecular marker for drugs) as a weighted combination
of the gene’s driver features. Through an iterative procedure, the
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identify gene expression markers for drugs based on expression data and

drug sensitivity data. They measure the statistical significance of

associations between expression levels for each gene and sensitivity

measures for each drug. b The MERGE framework models the marker

potential (MERGE score) of each gene based on a weighted combination of

the gene’s driver features. MERGE simultaneously learns the driver feature

weights (and correspondingly, MERGE scores for all genes) and the impact

of the MERGE score on the observed gene-drug associations
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MERGE algorithm jointly learns these weights and the degree of
impact that genes’ marker potentials have on observed gene-drug
associations (Fig. 1b). We show that MERGE outperforms several
state-of-the-art approaches in identifying molecular markers
replicated in validation data and predicting drug sensitivity
accurately. We experimentally validate SMARCA4 as a molecular
marker and driver of sensitivity to topoisomerase II inhibitors,
mitoxantrone and etoposide, in AML by showing that cell lines
transduced to have high SMARCA4 expression show dramatically
increased sensitivity to these agents.

Results
Data collected from 30 AML patients. We measured genome-
wide gene expression (Supplementary Note 1) and in vitro drug
sensitivity (Methods section) to a panel of 160 chemotherapy drugs
and targeted inhibitors across 30 AML patient samples (Supple-
mentary Data 1). The customized drug panel we used contained 62
drugs approved by the U.S. Food and Drug Administration (FDA)
and encompassed a broad range of drug action mechanisms
(Supplementary Data 2). The other drugs, investigational agents,
have been studied in cancer patients. We chose 53 drugs that
exhibited activity (cell viability ≤50%) against at least half of the
patient samples (Supplementary Table 1). As was done previously
in the CCLE study3, we processed the drug sensitivity data by curve
fitting and then extracting summary statistics. We used the area
under the curve (AUC) throughout the paper because it represents
an average of drug sensitivity across a range of drug concentra-
tions; indeed, AUC showed by far the strongest association with
gene expression levels (Supplementary Note 2). Supplementary
Data 3 describes usual evaluation (including risk group category
and cytogenetic features), response to treatment, and duration of
remission. Supplementary Note 3 summarizes the clinical infor-
mation and describes our analysis on the consistency between
clinical data and our in vitro drug sensitivity data. In brief, we
showed a statistically significant association between FLT3 muta-
tion status and 12 drugs known to have a FLT3 inhibitory role.
Statistical significance of the association between the complete
remission (CR) status and the AUC across all 53 drugs.

Drug sensitivity assayed in 14 AML cell lines. We utilized cell
lines to intensify our focus on the hypotheses for which we could
provide additional experimental evidence, since it is easier to
perform overexpression or knockout experiments on cell lines
than on primary patient tissues. However, we noted a very small
overlap between our 160 drugs and the drugs tested on the 14
AML cell lines in the CCLE data (two drugs overlapping, each
tested on three AML cell lines). Thus, for effective computational
and experimental validation of the significant gene-drug asso-
ciations discovered in the patient data, we measured in vitro drug
sensitivity of 14 AML cell lines to the same set of 160 drugs in our
high-throughput assay (Supplementary Data 1) while we used
publicly available expression data of the 14 AML cell lines from
CCLE. We observed a statistically significant overlap (Fisher’s
exact test p-value = 3 × 10−6) of gene-drug pairs with significant
association p-values between our discovery data from 30 AML
patient samples and the CCLE validation data. Our unique vali-
dation setting let us measure the testability of discovered asso-
ciations. We also surmised that in vitro drug sensitivity data that
we measured on the AML cell lines, besides on the AML patient
samples, would provide a valuable resource to the broader
research community to generate or test hypotheses relevant to
personalized medicine in AML.

The MERGE algorithm provides a new way to prioritize genes.
Our MERGE algorithm provides a new way to prioritize gene-

drug associations by incorporating prior information on genes’
relevance to AML and potential to drive it (Methods section).
MERGE learns a priority score for each gene, called a MERGE
score, based on the gene’s driver features: (1) mutation, (2)
expression hubness, (3) whether the gene has a known Regulatory
role, (4) genomic CNV, and (5) methylation. These driver fea-
tures were extracted from publicly available sources, such as
TCGA AML study12, AML expression studies14, and gene
annotation databases. The details on the sources and the pre-
processing of the driver features are included in Supplementary
Notes 4–6.

The MERGE score represents a prior probability that the gene
is a reliable (i.e., likely driven by biological mechanisms, not
confounders) molecular marker for response to drugs, modeled as
a weighted combination of the gene’s MERGE features (Fig. 1b).
The MERGE algorithm jointly learns these driver feature weights
and how the MERGE score of genes explains the observed gene-
drug associations. Genes with high MERGE scores (i.e.,
high marker potentials) tended to have many observed associa-
tions with drugs. The learned driver feature weights provide new
insights into what kind of molecular data is most informative of a
gene’s potential to be a reliable marker for therapeutic response.
After the MERGE score of each gene is estimated, we considered
the top N genes based on MERGE scores as a prioritized subset
and then selected the gene-drug pairs with significant association
p-values (genome-wide FDR corrected p-value <0.1) (Supple-
mentary Note 7).

Expression hubness significantly determines the MERGE
scores. The driver feature weights learned by the MERGE algo-
rithm (Methods section) indicate the relative importance of each
driver feature on the MERGE scores (Fig. 1b). As described in
Supplementary Note 8, the MERGE score of gene i is defined as
P

5

k¼1

vkdik

� �

; where vk is the kth driver feature weight and dik is

the kth driver feature of gene i. Expression hubness (i.e., number
of neighbors in a gene network estimated based on publicly
available AML expression data) has the highest weight (Fig. 2a)
and makes the largest contribution to the MERGE scores (Fig. 2b,
Supplementary Data 4).

This implies that gene expression data provide more informa-
tion about a gene’s potential to predict drug response than other
types of data, perhaps for the following reasons: (1) Gene
expression data can reflect downstream effects of genetic or
epigenetic changes that may not have been detected by existing
mutation, CNV and methylation profiles. (2) Expression hubness
was estimated from a larger number of patients because
expression data are the most common type of molecular data
from disease studies. (3) Expression hubness has been considered
likely to indicate selective pressure in tumor genome evolution
and to drive events11.

Identifying expression hubs has therefore been considered a
powerful complementary way to identify candidate tumor drivers
that are hard to detect from sequence data due to a large number
of passenger mutations. The importance of the expression
hubness feature (Fig. 2) suggests that these candidate tumor
drivers might prove promising markers for drug response. The
methylation feature is negatively weighted, consistent with prior
knowledge that methylation in a promoter region silences the
corresponding gene15.

Overview of our statistical and biological findings. We eval-
uated our MERGE algorithm in four different ways and we
observed that the results were very promising in all four cate-
gories of evaluation we performed. Following is a summary of
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those categories: (1) Consistency of significant gene-drug asso-
ciations in left-out test data. We compared MERGE to four other
methods in terms of consistency of significant gene-drug asso-
ciations, where we used all 30 patient samples for discovery and
validated the discovered associations using (i) 14 cell lines, (ii)
independent patient data from 12 new AML specimens. (2)
Consistency of significant gene-drug associations within drug
functional classes. If a gene X were associated with a drug Y, X
would also be likely associated with another drug Y’ with the
same mechanism of action (e.g., sunitinib and tandutinib are in
the ‘Flt3 inhibitor’ class) (Supplementary Data 2). We compared
MERGE to four other methods in terms of within-drug class
consistency—the extent to which the gene-drug association was
conserved across drugs in the same functional category. (3)
Prediction of patient drug response. We compared MERGE to
three other methods for evaluating consistency of patient rank-
ings based on actual vs. predicted drug sensitivity. We tested in
two ways: (ii) We used one batch containing 12 patient samples
for training and a different batch containing 12 patient samples
for validation (and vice versa). (ii) We used a leave-one-out cross
validation (LOOCV) test to obtain the predicted drug sensitivity
across 30 patient samples. (4) Biological interpretation and
experimental validation. We discussed top-ranked genes for
several drug classes based on our MERGE prioritization method
and their associations with the corresponding drugs. Finally, we
described results of the experimental validation on one of the top-
ranked genes, SMARCA4, whose expression is significantly
associated with increased sensitivity to mitoxantrone and
etoposide.

Consistency of gene-drug associations in left-out data. We
compared MERGE to four conventional methods: (1) Pearson’s
P-value of correlation. For each gene-drug pair, we computed the
t statistics and the associated p-value, measuring the correlation
in a univariate linear regression model. We then selected the

gene-drug pairs with the smallest association p-values. (2)
Spearman P-value of correlation. For each gene-drug pair, we
measured the rank association using the Spearman correlation
and selected the gene-drug pairs with the smallest association p-
values. (3) ElasticNet. For each drug, we solved the elastic net
optimization problem4 using gene expression as input, as done by
Barretina et al.3 and Garnett et al.2, and selected the gene-drug
associations with the strongest weight. (4) Multi-task learning.
We used the multi-task learning method16 implemented by Pong
et al.17, which considers each drug as a different task. We then
selected the gene-drug associations with the strongest weight.

We discovered gene-drug associations within the data from all
30 samples, and tested them on two independent data sets: (a) 14
CCLE cell lines (Fig. 3a, b) 12 additional AML patients who had
relapsed or were refractory to at least two (up to six) prior
regimens (Fig. 3b). Supplementary Note 9 shows the clinical
information on the additional 12 patients, and Supplementary
Data 5 presents the gene expression (processed RNA-seq) and the
drug sensitivity (AUC) data from the same patients.

Each method prioritized gene-drug pairs differently (Supple-
mentary Note 10). For evaluation, we computed the true
discovery rate (that is, how many significant associations were
replicated in the left-out test data) when considering the top N
genes per drug on average (i.e., 53 ×N gene-drug pairs in total).
Specifically, we computed the consistency rate (y-axis)—defined
as the number of significant gene-drug associations replicated in
the left-out test data divided by the total number of significant
gene-drug associations within the selected 53 ×N gene-drug pairs
—for varying values of N (x-axis) from one to all genes. In both
settings (Fig. 3a, b), MERGE showed a much higher consistency
rate for high-scoring genes (small N values) than the other two
methods and the random ordering of genes (gray lines). As N
increased, methods had more similar consistency rates because
their top N genes became more similar.

Unlike the initial 30 samples, the additional 12 samples were
highly refractory, and many of them exhibited extremely poor

b

a

Hubness

Regulator

Mutation

Copy number variation

Methylation

1.5

12

10

8

6

4

2

0
2000 4000 6000 8000 10,000 12,000 14,000 16,000

Number of top genes

1

0.5

–0.5

–1

–1.5

0

v
-v

a
lu

e

A
ve

ra
g

e
 c

o
n

tr
ib

u
ti
o

n

o
f 
e

a
c
h

 d
ri

ve
r 

fe
a

tu
re

Fig. 2 Importance of each driver feature in predicting the drug response based on the MERGE algorithm. a Learned driver feature weight values. The

methylation feature has a negative weight, consistent with our prior knowledge that when DNA is methylated in the promoter region, the corresponding
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risk features. This could potentially account for the lower
consistency rate in Fig. 3b even though both the discovery and
validation samples were obtained from patient specimens. We did
not expect that highly refractory patients (refractory after 2–6
prior regimens) would exhibit the same drug sensitivity patterns
as the 30 patients with newly diagnosed disease or first or second
relapses. In addition, we surmised that the refractory patients may
have activated other survival pathways and mechanisms of drug
resistance. Still, even in this challenging validation setting,
MERGE outperformed four alternative methods.

Three reasons accounted for the poor performance of the
ElasticNet and Multi-task learning methods in Fig. 3a, b. First,
these multiple regression methods, intended to solve a prediction
problem, were not specifically designed to capture robust gene-
drug associations. Conversely, MERGE was designed to aggres-
sively decrease the number of false positive gene-drug associa-
tions by incorporating prior knowledge about the genes’ potential
to drive the disease. Second, since this problem was ultra-high-
dimensional (30 samples and ~17 K variables), multiple regres-
sion methods were likely to learn models too complex to identify
robust gene-drug associations, even with regularization (e.g.,

elastic net penalty). Finally, since multiple regression methods
model each response as an aggregated effect of multiple features,
highly correlated features would share a fixed amount of weight.
This would assign a small magnitude of weight to each of many
correlated features. Many robust gene-drug pairs whose associa-
tions would have been replicated in validation data were likely to
have been eliminated in this way.

MERGE uses a strong prior and this might have been an
important factor for MERGE’s strong feature consistency result.
To show that the training data are also a critical factor for the
high consistency rate of MERGE, we performed MERGE on 100
different permutations of the data where the training samples in
the drug response data are shuffled. We then tested the learned
models on both 14 cell lines and the 12 refractory samples,
similarly to Fig. 3. As shown in Supplementary Fig. 1, the MERGE
run using the original sample ordering achieved a higher
consistency rate than most of the permutation runs, and many
of the permutation runs perform worse than the competing
methods, which shows that MERGE makes use of the information
in the training data and the prior information alone is not very
helpful when the training data is random.
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Drugs in the same classes exhibited similar response pattern.
The 53 drugs we considered were classified into 24 broad classes
based on their mechanism of action; 15 classes contained >1 drug
(Supplementary Data 2). Sixteen of the 53 drugs were shared
across two classes, while the other 37 drugs were in a single class.
It was easier to define the class of older, more classic drugs. It
became more difficult for inhibitors that had differential actions
for different targets, so we kept them in a more general class.
Different drugs with similar mechanisms of action were expected
to show similar response across patients and show similar pat-
terns of gene-expression association. To test this hypothesis in an
unbiased way, we first applied an agglomerative hierarchical
clustering approach to compare the AUC values of different drugs
across 30 patient samples. Figure 4a shows that drugs in at least
10 of 15 classes (with >1 drug) were clustered, which indicates
that drugs with the same mechanism of action tended to have
similar response patterns (Supplementary Note 11).

For each gene, we also examined whether the drugs with which
the gene was significantly associated tended to be clustered into
the drug mechanism classes. We computed each gene’s specificity
measure, which we referred to as its drug class specificity (DCS)
score (Supplementary Note 12). For each gene significantly
associated with at least one drug, we then estimated the
significance of its DCS score by comparing it with 1000 random
DCS scores for the same gene, each from a permutation test
where we shuffled the class labels of all drugs. Figure 4b shows a

QQ plot of the empirical DCS score p-values from 1000 random
permutation tests (y-axis) against the Uniform(0,1) distribution
quantiles (x-axis) for each gene. The empirical DCS p-values were
significantly lower than random (permutation test p-value: 0.029),
indicating the statistical significance of the DCS in gene
expression dependency of the drugs overall.

Specificity of gene-drug associations to drug classes. If a gene’s
expression level were specifically associated with drugs in the
same mechanism class, we would have higher confidence in the
observed associations resulting from the underlying biological
mechanisms. Genes with expression levels associated with too
many drugs in a diverse set of classes would be less likely to be
true markers, and the observed associations would more likely be
due to confounders. Here, we used the specificity of gene-drug
associations to a drug mechanism class as an evaluation metric,
and we used the DCS score as the evaluation metric for each gene
(as described above). We took the average DCS score (y-axis) over
the genes associated with the top gene-drug pairs (i.e., 53 ×N
gene-drug pairs in total) for varying N values (x-axis) (Fig. 4c).
MERGE showed a much higher degree of drug mechanism class
specificity than the alternative methods.

Drug sensitivity prediction performance. We next compared
MERGE to the following methods that predict patient drug
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color bar at the top represents the standardized AUC values. For several branches in the resulting dendrogram, we report the drug classes that have
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response: (1) ElasticNet4, (2) multi-task learning16,17, and (3)
Bayesian multi-task multiple kernel learning (MKL), the winner
of the NCI-DREAM Drug Sensitivity Prediction Challenge18. Like
MKL, we compared these methods in terms of the consistency
among the ranking of patients based on their actual versus pre-
dicted drug sensitivity.

We considered the following two settings: (a) we trained a
prediction model based on 12 samples in one batch and tested on
the 12 samples in another batch, and vice versa; then we averaged
prediction accuracy results (Fig. 5a, b). We measured the
prediction performance via LOOCV using all 30 patient samples
(Fig. 5b).

In Fig. 5a, b, we compared MERGE (y-axis) to the three other
methods (x-axis) in terms of prediction performance measured by
rank correlation between predicted and actual drug response in
the test set across patients. Each dot corresponds to one of the 53
drugs, and each color to one of the methods compared to MERGE.
In both experimental settings (a and b), MERGE performed
competitively with the alternative methods in terms of prediction
performance averaged over all drugs. We performed a one-sided
Wilcoxon signed-rank test to show the significance of the
outperformance of MERGE relative to the methods in comparison.
In fact, the p-values are significant at a p ≤ 0.007 level for four out
of six comparisons and at a p ≤ 0.1 level for the other two. We
show the p-values in the legend of Fig. 5a, b for each comparison,
and Supplementary Fig. 2a, b show the detailed performance for
each of the drugs. As shown in the legend of Supplementary
Fig. 2a, b, MERGE achieves the best prediction performance for a
higher number of drugs than each of the three alternative methods.
Indeed, in the LOOCV test (Supplementary Fig. 2b), MERGE
achieved the best prediction performance for 62% of the drugs.

MERGE identifies the roles of several drug response markers.
We now interpret the gene-drug associations identified by
MERGE, which offer the potential to make novel discoveries
about molecular markers (Fig. 6). We seek to derive hypotheses
likely to lead to discoveries or experimental validation targets.
Therefore, we further narrowed significant gene-drug associations
to: (1) those that were consistently significant in cell lines so we
could perform experimental validations, and (2) those that
showed a high degree of specificity for a drug mechanism class.
For each of the 24 drug mechanism classes, we considered the
high MERGE-scoring genes whose associations with drugs were
specific to that class (Fisher’s exact test p-value <0.05) and whose
associations to that class were conserved in cell lines. Supple-
mentary Table 2 lists these genes for the 20 drug classes that had
at least one class-specific gene. Supplementary Data 6 shows the
entire list of the genes for each class and the corresponding results
in detail. Figure 6a depicts a heat map that shows the level of
specificity of each gene (row) to each drug class (column), mea-
sured by � log10 [Fisherʹs exact test p-value] for the top three
MERGE-scoring genes in each drug class. Figure 6b highlights the
drugs associated with each gene. In Fig. 6b, the red color indicates
a negative association between gene expression and drug AUC
measure (i.e., high expression indicates low AUC and hence
sensitivity), while green indicates a positive association (i.e.,
high expression indicates resistance). We show in Supplementary
Fig. 3 the heat maps for the four alternative methods with which
we compared MERGE (in Figs 2, 3c). Supplementary Fig. 4 shows
the amount of contribution of each driver feature on the MERGE
score for the genes shown in Fig. 6, b.

The following sections summarize the eight top-ranked genes
in some of the major drug classes (FLT3, CASP8AP2, L2HGDH,
MNT, BAZ2B, MZF1, BEX2, and SMARCA4) that are highly
likely to have notable biological significance in leukemia. We

observed that for five of these eight genes (SMARCA4, FLT3,
MNT, BAZ2B, and MZF1), MERGE provided a unique path
toward identifying their roles that the other four methods simply
could not identify (Supplementary Table 3). Except for ElasticNet,
the alternative methods identified only one of these eight genes,
L2HGDH.
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FLT3 expression predicts response to Flt3 inhibitors. FLT3
(FMS like tyrosine kinase 3), the top-ranked gene in the
Flt3 inhibitor class (Supplementary Table 2), is a significant
expression hub and regulator that is highly mutated
(Supplementary Fig. 4). FLT3 mutations are associated with a
poor prognosis in AML19,20. The principal type that occurs in
about 25% of AML patients is internal tandem duplication (ITD).
After treatment with some Flt3 inhibitors21, these patients often
develop FLT3 D835 (kinase domain) mutations, which is present
in 8% of patients. One study shows a correlation between FLT3
expression levels and prognosis among patients with wild-type
FLT322.

Our method led to a new finding: the high expression of FLT3
is associated with increased sensitivity to the drugs sunitinib,
ponatinib (previously AP24534), midostaurin (PKC412), and
tandutinib (Fig. 6a, b). Sunitinib is a multi-targeted receptor
tyrosine kinase inhibitor FDA-approved for renal cell carcinoma
and imatinib-resistant gastrointestinal stromal tumor. Ponatinib,
another multi-targeted receptor tyrosine kinase inhibitor, is FDA-
approved for chronic myelogenous leukemia that has failed to
respond to first-line inhibitors. Tandutinib is an inhibitor of the
type III receptor tyrosine kinases FLT3, platelet-derived growth
factor receptor (PDGFR), and KIT. Midostaurin was studied in a
prospective, randomized trial in newly diagnosed patients with
FLT3 mutations undergoing induction, consolidation, and
maintenance therapy, and the group that received midostaurin
exhibited prolonged event free (p = 0.0044) and overall survival
(p = 0.007) as compared to placebo23. Midostaurin recently
received breakthrough therapy designation from the FDA for
newly diagnosed FLT3-mutated AML.

Because FLT3 mutation status is an important prognostic
indicator in AML with the potential to guide therapy, we
compared FLT3 mRNA expression and FLT3 mutation status in
terms of significance of correlation with response to 53 drugs. For
(a) patients and (b) cell lines, Supplementary Fig. 5 shows the
significance of association achieved by FLT3 expression level (y-
axis) vs. by FLT3 mutation status (x-axis) for each drug. More
dots appear above the diagonal in both Supplementary Fig. 5a, b,
which implies that mRNA level achieved a more significant
association than FLT3 mutation status for a larger number of
drugs (36 vs. 17 in patients; 31 vs. 22 in cell lines). For fair
comparison, to generate Supplementary Fig. 5a for both FLT3
mRNA and mutation status, we used only 27 patients for whom
mutation status was known. Further, we used Quentme-
ier et al. [24] as the source for the FLT3 mutation status for the
cell lines.

CASP8AP2 expression predicts sensitivity to Bcl2 inhibitors.
CASP8AP2 (caspase 8 associated protein 2) is the top-ranked
gene in the Bcl2 inhibitor class (Supplementary Table 2). Over-
expression of BCL2 lets cancer cells evade apoptosis, the process
of programmed cell death. The first Bcl2 inhibitor to gain
approval for patients, venetoclax, was approved by the FDA on 11
April 2016 to treat the subset of relapsed patients with chronic
lymphocytic leukemia that have the deletion of chromosome 17p,
which contains the TP53 gene. The drug is also undergoing
evaluation in early phase AML clinical trials (e.g. NCT02203773,
NCT02287233 on ClinicalTrials.gov). We found an association
between an increased expression of CASP8AP2 with an increased
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Fig. 6 The 44 genes in total each of which was identified, by the MERGE approach, as being one of the top three important marker genes for a drug

mechanism class. a A heat map that shows the level of specificity of each of the 44 genes (row) to each drug class (column) measured by −log10 (Fisherʹs

exact test p-value). For clarity, we considered only Fisher’s exact test p-value <0.05 to be significant; other values are indicated in yellow. The drug classes

that are not assigned by MERGE any genes with associations specific to the class and consistent in the cell line data are not shown. We highlighted the

genes whose biological significance, we discussed in the Results section with black-colored boxes. b A heat map that shows the gene-drug association for

genes and drug classes shown in a. Yellow indicates that the corresponding gene-drug pair does not have a statistically significant association (genome-

wide FDR corrected p-values <0.1), while green indicates a positive and red a negative association. The drugs are grouped by blue lines based on their

classes, and the class names for each group are written on top of the heat map. Drugs that are members of more than one drug class (e.g., sunitinib) are

shown multiple times for each class to which the drug belongs. The list on the right shows the genes whose biological significance we discussed in the

Results section, and the drug classes they are specific to
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sensitivity to Bcl2 inhibitors (Fig. 6b). Caspases mediate the
activation of apoptosis, and low expression of CASP8AP2 has
been associated with a poor prognosis in pediatric acute lym-
phoblastic leukemia25 and an increased risk of relapse26. More-
over, a single report notes a translocation of the poor risk MLL
(mixed lineage leukemia) gene to the CASP8AP2 gene in an AML
patient with a t(6;11)(q15;q23) translocation27. It is therefore not
surprising that expression of a gene in the apoptotic pathways
(e.g., a caspase associated protein) would be associated with
sensitivity to inhibiting the activity of one of the main antagonists
of apoptosis. Restoring apoptosis by inhibiting BCL2 may
enhance cell death by increasing the level of expression of
apoptotic pathway proteins, such as CASP8AP2.

L2HGDH expression is the predictor for CDK inhibitors.
Cyclin-dependent kinase (CDK) inhibitors prevent proliferation
of cancer cells. L2HGDH (L-2-hydroxyglutarate dehydrogenase)
is an enzyme that catalyzes conversion of L-2-hydroxyglutarate to
alpha ketoglutarate. We found that the increased expression of
L2HGDH, the only gene associated with the CDK inhibitor class
(Supplementary Table 2), was associated with increased sensi-
tivity to CDK inhibitors. Elevated serum 2-hydroxyglutarate (2-
HG) levels have been associated with isocitrate dehydrogenase
(IDH1 and IDH2) mutations in AML28,29, as well as clinical
outcomes28. In addition, elevated 2-HG inhibits the function of
TET2, resulting in DNA hypermethylation30. In addition, histone
demethylases are competitively blocked by 2-HG31. The elevated
expression of L2HGDH would be expected to lower levels of 2-
hydroxyglutarate and thus abrogate the deleterious secondary
effects of DNA and histone methylation. CDK inhibitor genes
were the most frequently downregulated genes in IDH1
mutants32 with high 2-HG levels, thus linking the association we
observed with susceptibility to CDK inhibitors with L2HGDH.

MNT and BAZ2B are expression markers for HDAC inhibi-
tors. We found a correlation between susceptibility to HDAC
inhibitors and increased expression levels of MNT and BAZ2B
(Fig. 6b), top two genes in the HDAC inhibitor class (Supple-
mentary Table 2). MNT encodes the protein Mnt, a member of
the Myc/Max/Mad network of transcription factors that controls
cell proliferation, differentiation, and death. It is known to be
critical for normal myeloid differentiation in AML cell lines, and
its loss leads to proliferation33. Mnt has a Sin3-interaction
domain (SID) that lets it interact with mSin3A and mSin3B,
which recruit histone deacetylases (HDACs), resulting in tran-
scriptional repression34. Therefore, a high expression of MNT
would be predictive of whether inhibiting HDACs has an effect.

BAZ2B (Bromodomain Adjacent to Zinc Finger Domain, 2B),
is a bromodomain containing protein. The sole function of
bromodomain is to recognize acetyl-lysine on histones and non-
histone proteins35. Histone deacetylases remove acetyl groups
from these sites. This suggests that high expression levels of such
genes are associated with chemotherapy drug sensitivity for
HDAC inhibitors, bringing a new insight into mechanisms that
govern individual patient response to chemotherapy involving
regulation of chromatin state. Additionally, a popular class of
bromodomain inhibitors has shown potential for treating
aggressive leukemia36.

Histone deacetylases impair myeloid differentiation. This is
why HDAC inhibitors are potentially useful in therapy and have
long been long investigated to treat myelodysplastic syndrome
and AML37. Various publications address the efficacy of some
HDAC inhibitors in clinical trials in AML, including vorinostat,
panobinostat, and romidepsin38–40.

BEX2 expression is a potential marker for NFkB inhibitors.
NFkB (Nuclear factor kappa B), a transcription factor, is con-
stitutively active in many cancers and inhibits both apoptosis and
drug resistance. BEX2, one of the top genes in the NFkB inhibitor
class (Supplementary Table 2), is overexpressed in breast cancer
and glioma41. In KIT-driven AML, NFkB binds to Sp1 and
transactivates KIT42. In addition, inhibiting both NFkB and JNK
is effective in AML expressing the tumor necrosis factor43. Lastly,
BEX2 expression occurs in AML with translocations involving the
MLL gene44.

SMARCA4 and MZF1 are markers for topoisomerase II inhi-
bitors. SMARCA4 and MZF1 are the top two genes in the
anthracycline/topoisomerase inhibitor/DNA intercalator class
(Supplementary Table 2), and both genes are correlated with
sensitivity to the drugs in that class (Fig. 6a). The drugs
SMARCA4 is associated with are mitoxantrone, etoposide, and
topotecan (Fig. 6b). Mitoxantrone and etoposide are topoisome-
rase II inhibitors; topotecan is a topoisomerase I inhibitor.
SMARCA4 (SWI/SNF related, matrix associated, actin dependent
regulator of chromatin, subfamily a, member 4) is a component
of one of the adenosine triphosphate (ATP)-dependent SWI/
SNF-like Brg/Brm-associated factor (BAF) chromatin remodeling
complexes. Mutations of SMARCA4 (BRG1) occur in 10–35% of
non-small cell lung carcinoma, 15% of Burkitt’s lymphoma,
5–10% of childhood medulloblastoma, and less frequently in
other cancers45. Further, SMARCA4 mutations characterize small
cell carcinoma of the ovary of the hypercalcemic type46. Fur-
thermore, one recent study demonstrated a direct role for
SMARCA4 in facilitating decatenation of DNA by topoisomerase
II47. In leukemia, the core ATPase subunits are BRG/SMARCA4
and BRM/SMARCA2, where BRG/SMARCA4 is essential for the
proliferation of both normal hematopoietic stem cells and leu-
kemia stem cells48.

MZF1 is a member of the SCAN-zinc finger family of
transcription factors, frequently mutated in many types of
cancer49. Initially, it was believed to have a role in promoting
myeloid malignancy50, but because knockout animals exhibited
proliferation of hematopoietic progenitors, it was also thought to
potentially suppress hematopoietic malignancy51. MZF1 localizes
in the PML-NBs (promyelocytic leukemia nuclear bodies)52,
which are protein complexes involved in post-translational
modification of nuclear proteins and response to DNA damage53.
It was shown that the topoisomerase II inhibitors etoposide and
doxorubicin, known to create double-stranded DNA breaks54,
increased the number of PML-NBs by a fission mechanism, and
then the number became regulated by cell cycle checkpoint
control53. Thus, topoisomerase inhibitors directly affect the PML-
NBs that incorporate MZF1.

Experimental validation of the marker role of SMARCA4.
Given the high level of specificity of the association between
SMARCA4 and the topoisomerase inhibitor class and prior
knowledge of the relationship between SMARCA4 and topoi-
somerase II described above, we experimentally validated the
association between SMARCA4 and the topoisomerase II inhibi-
tors (etoposide and mitoxantrone) by overexpressing SMARCA4.
The U937 leukemia cell line expressed high levels of SMARCA4
protein, while the KG1 leukemia cell line expressed very low levels
of the protein, as analyzed by western blot (Fig. 7e, Supplementary
Fig. 6) and flow cytometry (Fig. 7g). In vitro high-throughput drug
sensitivity testing showed that U937 was much more sensitive to
mitoxantrone and etoposide than KG1 (Supplementary Data 1).
After selection of stably transfected KG1 cells overexpressing
SMARCA4, confirmed by western blot of whole-cell lysates
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(Fig. 7e, Supplementary Fig. 6) and flow cytometry (Fig. 7g),
in vitro chemo sensitivity testing demonstrated enhanced cyto-
toxicity (reduced viability) compared to non-transfected cells,
more pronounced at the 72 h times (Fig. 7a, b) than 48 or 24 h
(Supplementary Fig. 7) after addition of mitoxantrone or etopo-
side. Transfected U937 cells did not show significantly more
sensitivity to these drugs compared to non-transfected cells
(Fig. 7c, d), likely because U937 already showed a high expression
of SMARCA4. Supplementary Table 4 summarizes the AUC and
IC50 values of transfected/non-transfected cells for each cell line
and each drug. This result supports the hypothesis that SMARCA4
expression drives sensitivity to etoposide and mitoxantrone.

We repeated these experiments using two more cell lines–HL60
and MV4.11–that show higher SMARCA4 expression levels than
KG1 but lower levels than U937 (Fig. 7f). HL60 shows lower
SMARCA4 expression than MV4.11; thus, we would expect to see
more increased sensitivity in HL60 than in MV4.11 when
overexpressing SMARCA4. As expected, we saw increased
sensitivity to etoposide when HL60 was transfected to overexpress
SMARCA4 (Supplementary Fig. 8i) and no sensitivity change for
MV4.11 (Supplementary Fig. 8k, l). HL60 had already been very
sensitive to mitoxantrone before transfection to overexpress
SMARCA4; thus, it was not surprising to see no change in
sensitivity after transfection (Supplementary Fig. 8j). HL60 had
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Fig. 7 SMARCA4 plasmid transfection experiments on cell lines KG1 and U937 for comparison of response to etoposide and mitoxantrone between original

and transfected cells. a, b Comparison of the 72-h dose-response curves between KG1 cells (blue) and transfected KG1 cells (red) when cells are treated

with (a) etoposide, and (b) mitoxantrone. c, d Comparison of the dose-response curves between U937 cells (blue) and transfected U937 cells (red) when
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been as sensitive to mitoxantrone as U937, which is why
overexpressing SMARCA4 did not lead to a change in
mitoxantrone response of HL60.

Discussion
Due to the small sample size and the potential confounding
factors in the gene expression and the drug sensitivity data,
standard methods to discover gene-drug associations usually fail
to identify replicable signals. We present a new way to identify
robust gene-drug associations by prioritizing genes based on the
multi-dimensional information on each gene’s potential to drive
cancer. We demonstrate that our method increases the chance
that the identified gene-drug associations are replicated in vali-
dation data. This leads us to a short list of genes which are all
attractive biomarkers for different classes of drugs. Our results—
including the expression, drug sensitivity data, and association
statistics from patient samples—have been made freely available
to academic communities.

Our results suggest that high SMARCA4 expression could be a
molecular marker for sensitivity to topoisomerase II inhibitors in
AML cells. These results offer a potentially enormous impact to
improve patient response. Mitoxantrone is an anthracycline, like
daunorubicin or idarubicin, and one of the two component
classes of drugs included in nearly all upfront AML treatment
regimens. It is also included (the “M”) in the CLAG-M regimen55,
a triple-drug component upfront regimen now being studied as
GCLAM56. Mitoxantrone and etoposide (also a topoisomerase II
inhibitor) are two of the three drugs in the MEC regimen57, used
together with cytarabine, as a common regimen for relapsed/
refractory AML. Many modern regimens are in clinical trials that
add an investigational drug to the MEC backbone, for example,
an antibody to CXCR4 (NCT01120457) or an E selectin inhibitor
(NCT02306291) in combination, or decitabine priming preceding
the MEC regimen58. Identifying a predictor of response to
mitoxantrone based on clinically available biospecimens, such as
leukemic blast gene expression measured prior to treatment,
could potentially increase median survival rates for patients with
high expression of SMARCA4 and indicate alternative therapies
for patients with low SMARCA4 expression.

The AML patients used in our study were consecutively
enrolled on a protocol to obtain laboratory samples for research.
They were selected solely based on sufficient leukemia cell
numbers. As the patient samples were consecutively obtained and
not selected for any specific attribute, we postulated that they
were representative of patients seen at a tertiary referral center
and that the results would be relevant to a larger, more general
clinical population. Moreover, since each of the data sets from
which we collected prior information (driver features) contained
many more than 30 samples (e.g., TCGA AML data), it would be
highly likely that MERGE results would be more generalizable to
larger clinical populations than the methods that retrieve results
specifically based on the 30 AML samples. In fact, Fig. 2a, b
implies higher generalizability of MERGE compared to alternative
methods.

While we have genotype information on FLT3 and NPM1 and
the cytogenetic risk category for most of the 30 patients, the
current version of the MERGE framework did not take these
features into account: our main focus sought to build a general
framework that could address the high-dimensionality challenge
(i.e., the number of samples being much smaller than the number
of genes) and make efficient use of expression data to identify
robust associations. However, to consolidate our findings, we
performed a covariate analysis to confirm that the top-ranked
gene-drug associations discovered by MERGE remained sig-
nificant when the risk group/cytogenetic features were considered

in the association analysis. We checked whether the gene-drug
associations shown in the heat map in Fig. 6b (highlighted as red
or green) were conserved when we added each of the following as
an additional covariate to the linear model: (1) cytogenetic risk,
(2) FLT3 mutation status, and (3) NPM1 mutation status. In
Supplementary Fig. 9, each dot corresponds to a gene-drug pair,
and each color to a different covariate. Most of the dots being
closer to the diagonal indicates that the associations did not
decrease significantly after adding the covariates. Moreover, of
357 dots, only eight were below the horizontal red line; this
indicates that 98% of the gene-drug associations MERGE
uncovered were still significant (p ≤ 0.05) after modeling the
covariate.

Methods
High-throughput drug sensitivity assay. We developed a custom high-
throughput screen for 160 oncology drugs, including a proportion that were FDA-
approved (initially 40, now 62), with the remainder being investigational, that is,
undergoing evaluation in cancer clinical trials. Only a limited number of drugs are
FDA-approved for AML, and a majority are included in our assay, such as dau-
norubicin, idarubicin, cytarabine, mitoxantrone, thioguanine, arsenic trioxide, and
midostaurin. Each drug was evaluated at eight different concentrations, in dupli-
cate, and adherent to coated 384 well plates to mimic the marrow microenviron-
ment, wherein attachment confers drug resistance. The drugs encompassed a broad
range of classes with different mechanisms of action, including kinase inhibitors,
nucleoside analogs, alkylating agents, mTOR inhibitors, anthracyclines, hypo-
methylating agents, steroids, and others (Supplementary Data 2). We profiled the
drug sensitivity of an initial sample set of 30 viably cryopreserved primary patient
AML specimens (24 new diagnosis, 6 relapsed/refractory) and 14 leukemia cell
lines. A second validation set of 12 additional leukemia cell samples were studied
from patients enrolled on a clinical trial for refractory AML (NCT02551718).

The patient samples, obtained with informed consent of patients on a protocol
approved by the University of Washington-Fred Hutchinson Cancer Research
Center Cancer Consortium IRB, were de-identified prior to study in the laboratory,
with preservation of detailed clinical information, including: age, gender,
cytogenetics, mutation status, antecedent hematologic disorder, initial blast count,
initial platelet count, treatment regimen, response, and survival. Viably
cryopreserved primary AML samples were thawed in the presence of DNase, then
incubated for 48 h in IMDM containing 15% horse serum, 15% fetal calf serum,
and very low level human stem cell factor (hSCF) (10 ng/ml). The cells were then
subjected to density depletion on lymphocyte separation media and magnetic bead
separation (Miltenyi MACS) if needed to prepare blast-enriched fractions with
high (80–90%) viability and blast fractions exceeding 80%. Blast-enriched cell
fractions were plated in 384 well plates coated with extracellular matrix protein at a
density of 5000 cells/well in IMDM with 10% fetal calf serum. After plating
overnight, drugs were robotically added at eight different concentrations spanning
4–5 log concentrations within a range of 10–12–10–4M, individually tailored for
each drug. The samples were assayed in duplicate at each drug concentration.
Viability was assessed after 4 days in culture using CellTiter-Glo Luminescent Cell
Viability Assay (Promega, Madison, WI). These screens were performed at the
Quellos HTS Core (http://depts.washington.edu/uwhts/) at the UW’s Institute for
Stem Cell and Regenerative Medicine (ISCRM). We compared duplicates of the
AUC measure from curve fitting and observed a significant consistency (Pearson’s
correlation r: 0.94; p-value: 0) (Supplementary Fig. 10).

The MERGE algorithm. The MERGE algorithm takes the following data set: an
expression data matrix Χ (p genes × n patients), the drug response data matrix Υ (q
drugs × n patients), and the driver feature matrix D (p genes × 5 driver features)
(Fig. 1b, Supplementary Note 8). MERGE then learns the marker potential
(MERGE score) of each gene, which is modeled as a weighted combination of the 5
driver features whose weights are data derived: MERGE learns these driver feature
weights such that the resulting MERGE scores could explain observed gene-drug
associations to the maximum extent possible. Genes with high MERGE score tend
to be associated with more drugs than genes with low MERGE score (Fig. 1b).

To learn MERGE scores, we developed a probabilistic graphical model approach
that provides a statistical model to represent relationships among variables in input
data and a principled way of learning model parameters from data59. Probabilistic,
model-based approaches have been proven to be a powerful tool to generate
biological hypotheses from high-throughput molecular data60–63. The details on
the probabilistic model used to develop the MERGE framework and its
implementation are included in Supplementary Notes 13–15, Supplementary
Figs. 11 and 12.

Experimental validation for SMARCA4 in cell lines. The leukemia cell lines were
chosen for SMARCA4 overexpression based on their relatively high and low sen-
sitivity to mitoxantrone. The cell lines included KG1, U937, HL60, and MV4.11,

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02465-5 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:42 |DOI: 10.1038/s41467-017-02465-5 |www.nature.com/naturecommunications 11

http://depts.washington.edu/uwhts/
www.nature.com/naturecommunications
www.nature.com/naturecommunications


newly purchased for these experiments from the American Type Culture Collection
(ATCC) (Manassas, VA) under a material transfer agreement. The cell lines were
not re-authenticated, as they had just been received from the ATCC, nor were they
tested for Mycoplasma given the short time from the time they were received from
ATCC to use for these experiments. The cells were used at passage 3–9 for these
experiments. The plasmid containing the cDNA for SMARCA4 and the Turbo-
Fectin 8.0 reagent were obtained from Origene Technologies, Rockville, MD. The
cell lines were transfected using the manufacturer’s instructions. Successfully
transfected cells were isolated after culture in 200 μg/ml G418. Clonal growing cells
were obtained after 10 days, and these stable transfectants were used for subsequent
chemo sensitivity assays. SMARCA4 protein expression was analyzed using a
mouse monoclonal antibody (clone 6D7-F7-B6) against SMARCA4 (Origene
Technologies, Rockville, MD) to stain western blots prepared by transfer from 4 to
20% sodium dodecyl sulfate polyacrylamide gels run on whole-cell lysates. The
blots were incubated with the Pierce ECL western blotting substrate (Thermo
Scientific, Rockford, IL). Band intensities were quantified using NIH ImageJ soft-
ware. For chemotherapy sensitivity testing, cells were plated at 10,000 cells/well in a
96-well plate. The samples were assayed in duplicate at each drug concentration for
cytotoxicity with mitoxantrone (0.001–1 μM) or etoposide (0.1–10 μM). Stably
transfected and non-transfected cells were assayed in parallel. Analysis of cyto-
toxicity was performed by luminescent cell viability assay using CellTiter Glo
(Promega, Madison, WI) after 24, 48, or 72 h after addition of chemotherapy.

Code availability. The implementation of the MERGE algorithm in MATLAB and
R can be found in Methods section of the website associated with our study: http://
merge.cs.washington.edu.

Data availability. The data generated and used in this study are provided as
supplement. The genome-wide expression and in vitro drug sensitivity data from
30 AML patient samples and 14 AML cell lines are provided in Supplementary
Data 1. The 160 drugs in our customized drug panel and their action mechanism
classes are provided in Supplementary Data 2. The clinical information of the 30
AML patients is provided in Supplementary Data 3. The driver features collected to
be used as input of the MERGE algorithm are provided in Supplementary Data 4.
The processed RNA-seq and in vitro drug sensitivity data from 12 refractory AML
patient samples used for validation are provided in Supplementary Data 5. All
other relevant data are available upon request.

The genome-wide expression from our 30 patient samples used for discovery
and 12 patient samples used for validation have also been deposited in Gene
Expression Omnibus (GEO) under accession numbers GSE107465 and
GSE108003, respectively. SuperSeries GSE108004 groups together GSE107465
(microarray) and GSE108003 (RNA-seq).
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