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Comprehensive statistical inference 
of the clonal structure of cancer 
from multiple biopsies
Jie Liu  1, John T. Halloran2, Jeffrey A. Bilmes2, Riza M. Daza1, Choli Lee  1, Elisabeth M. 

Mahen3,4,5, Donna Prunkard6, Chaozhong Song3,4,5, Sibel Blau3,7, Michael O. Dorschner3,6, 

Vijayakrishna K. Gadi8,9, Jay Shendure1,10, C. Anthony Blau3,4,5 & William S. Noble  1,11

A comprehensive characterization of tumor genetic heterogeneity is critical for understanding how 
cancers evolve and escape treatment. Although many algorithms have been developed for capturing 
tumor heterogeneity, they are designed for analyzing either a single type of genomic aberration 
or individual biopsies. Here we present THEMIS (Tumor Heterogeneity Extensible Modeling via an 
Integrative System), which allows for the joint analysis of different types of genomic aberrations 
from multiple biopsies taken from the same patient, using a dynamic graphical model. Simulation 
experiments demonstrate higher accuracy of THEMIS over its ancestor, TITAN. The heterogeneity 
analysis results from THEMIS are validated with single cell DNA sequencing from a clinical tumor 
biopsy. When THEMIS is used to analyze tumor heterogeneity among multiple biopsies from the same 
patient, it helps to reveal the mutation accumulation history, track cancer progression, and identify 
the mutations related to treatment resistance. We implement our model via an extensible modeling 
platform, which makes our approach open, reproducible, and easy for others to extend.

Cancer is heterogeneous in the sense that the cancer cells in a tumor are not genetically identical, but form dis-
tinct clones, defined as subpopulations of cancer cells that host the same genomic aberrations. In aggressive and 
metastatic cancers, these genomic aberrations quickly evolve, resulting in extreme spatial and temporal heteroge-
neity1,2. Therefore, multiple biopsies over different locations and at different time points need to be collected and 
sequenced in order to capture the complexity of tumor genomic landscapes and provide insight into how tumors 
evolve and escape treatment3,4. Accordingly, computational tools are needed to accurately characterize the clonal 
structure of cancer and reveal how that structure evolves over time.

In recent years, a large number of computational tools and statistical models have been developed to analyze 
tumor heterogeneity from DNA sequencing data (Table 1). However, most of these tools only model one type of 
genomic aberration, such as single-nucleotide variants (SNVs), copy number alterations (CNAs), or structural 
variants. Restricting the analysis to a single type of mutation not only reduces statistical power to accurately detect 
the clonal structure within the tumor, but also prevents us from understanding interactions among different types 
of mutations. Furthermore, many SNV-based methods assume that no copy number changes have occurred, 
which is extremely improbable. Therefore, their estimation of the prevalence of a given clone can be inaccurate, 
and the corresponding heterogeneity results may be misleading. Existing methods that capture SNVs and CNAs 
in the same model (i.e., phyloWGS5, SPRUCE6 and Canopy7) require running a CNA-calling algorithm before 
heterogeneity analysis, but accurate CNA characterization also depends on heterogeneity analysis.
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Most existing tools are designed to analyze a single tumor biopsy and are not suitable for jointly analyzing 
multiple biopsies. As DNA sequencing becomes more affordable, we can more easily collect multiple biopsies 
from a single patient during treatment. If we only perform heterogeneity analysis on the individual biopsies, 
then we are unable to detect clones that are shared across different biopsies from the same patient, and we fail to 
address important questions about how the tumor cells evolve, metastasize and escape treatment.

Finally, although most models are free and publicly available, it is difficult to extend them by adding new 
assumptions and new types of biological data. Even under the best of circumstances, significant effort is required 
for users to fully understand the source code. In many situations, data structures and computational algorithms 
prohibit other investigators from modifying the model to accommodate their special needs.

To address these challenges, we propose THEMIS (Tumor Heterogeneity Extensible Modeling via an 
Integrative System), which allows us to jointly characterize different types of genomic aberrations from multiple 
biopsies using a dynamic graphical model. We implement our model via an extensible modeling platform, the 
Graphical Models Toolkit (GMTK)8, which makes our approach open, reproducible and easy for others to extend. 
To extend the model, users only have to modify the model specification files; GMTK then automatically handles 
the required computation. Simulation experiments demonstrate that THEMIS significantly increases the accu-
racy of recovering tumor subclones and their genotypes, compared with its ancestor, TITAN9. Single cell DNA 
sequencing confirms that individual nuclei can be segregated into one of the two tumor subclones identified by 
THEMIS. We applied THEMIS to three tumor biopsies from one cancer patient, thereby revealing the mutation 
accumulation history of the patient, tracking cancer progression, and identifying mutations related to developing 
resistance following various treatments.

Results
The Model. From bulk next generation sequencing data, we define two primary observations at each genomic 
position: the allelic ratio, defined as the proportion of the reads containing a specified allele among all reads 
aligned to the site, and the log ratio between tumor read depth and normal read depth (Fig. 1a). From these 

Software Year SNV CNA SV Multiple Model/Algorithm

OncoSNP17 2010 ✓
Mixture model, EM, Bayesian 
methods

TuMult18 2010 ✓ ✓ Breakpoint distance

GRAFT19 2012 ✓ Partial maximum likelihood

ABSOLUTE20 2012 ✓ ✓ Maximum likelihood

TrAp21 2013 ✓ Exhaustive search under constraints

THetA22,23 2013 ✓ Maximum likelihood

CancerTiming24 2013 ✓ Maximum likelihood

OncoSNP-seq25 2013 ✓
Mixture model, EM, Bayesian 
methods

PyClone26 2014 ✓ ✓
Dirichlet Process, beta-binomial/
MCMC

SciClone27 2014 ✓ ✓
Beta mixture model/variational 
Bayes

Clomial28 2014 ✓ ✓ Binomial mixture model, EM

CloneHD29 2014 ✓ ✓ ✓ HMM, EM, variational Bayes

MEDICC30 2014 ✓ ✓
Finite state transducer, minimum-
event distance

TITAN9 2014 ✓ Two-chain factorial HMM/EM

SubcloneSeeker31 2014 ✓ ✓ ✓
Clustering, enumeration and co-
localization prediction

BTP32 2014 ✓ Binary tree partition

BreakDown33 2014 ✓ Maximum likelihood

PhyloSub34 2014 ✓ ✓
Tree-structured stick-breaking 
process prior, MCMC

BayClone35 2015 ✓ ✓ Categorical Indian Buffet Process

PhyloWGS5 2015 ✓ ✓ ✓
Tree-structured stick-breaking 
process prior, MCMC

CITUP36 2015 ✓ ✓ Quadratic integer programming

LICHeE37 2015 ✓ ✓
Clustering and evolutionary 
constraint network

AncesTree38 2015 ✓ ✓ Integer linear programming

SPRUCE6 2016 ✓ ✓ ✓ Combinatorial enumeration

Canopy7 2016 ✓ ✓ ✓ MCMC

THEMIS (our work) 2017 ✓ ✓ ✓ Dynamic graphical models

Table 1. Software tools for characterizing within-patient and intra-tumor heterogeneity and their features, 
including whether they capture SNVs, CNAs and structural variants (SVs), whether they support multiple 
biopsy analysis, and their key models and algorithms.
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inputs, we aim to infer the number of distinct clones, the full genotype of each clone, and the prevalence of each 
clone within each biopsy (Fig. 1b). To carry out this inference, TITAN9 uses a dynamic graphical model, in which 
each frame represents one genomic position, and the allelic ratio and tumor/normal log ratio are observed at each 
frame. The backbone of the TITAN model consists of two hidden Markov chains, one representing the genotype 
of the CNA event at the current position, and the other representing the clone in which the CNA event occurs. 
Our model, THEMIS, is similar to TITAN in the sense that both models are dynamic graphical models with each 
frame representing a single genomic position, with CNA events captured by hidden Markov chains. However, 
THEMIS extends TITAN by (1) jointly accounting for SNVs and CNAs, (2) jointly analyzing multiple biopsies, 
(3) estimating transition probabilities between hidden states of the model from observed data rather than fixing 
them at specific values, and (4) using an open and extensible modeling language (GMTK8). More details about the 
THEMIS model, including the modeling choices and assumptions, model’s structure, variables and parameters, 
are provided in Methods section.

Simulation results. We first used simulated data to compare the performance of THEMIS and TITAN9. As 
a starting point for the simulation, we used the genomic positions measured in three tumor biopsies from three 
patients with triple negative breast cancer (Supplementary Table 1). For each set of genomic positions, we also 
specified three different sets of tumor subclone compositions. More details about the simulation experiments 
are provided in Supplementary Note 1. We evaluated (1) the percentage of sites at which the hidden genotype 
was incorrectly inferred, (2) the percentage of sites at which the clonal/subclonal status was incorrectly inferred, 
and (3) the percentage of sites at which either the genotype or clonal/subclonal status were incorrectly inferred. 
THEMIS outperformed TITAN in recovering the clonal/subclonal status and genotypes of the genomic posi-
tions in all experiments (two-sided paired t-test, p = 0.00137 for genotype recovery, p = 1.152 × 10−7) for clonal/
subclonal status recovery, and p = 0.00198 for both genotype and clonal/subclonal status recovery), and reduced 
the recovery error by 13.3% on average (Supplementary Table 2). Not surprisingly, both THEMIS and TITAN 
performed better when the prevalence of the somatic events was higher.

Validation via single-cell DNA sequencing. The two tumor clones in Fig. 1b were identified from the 
bulk DNA sequencing data from an involved axillary node in a patient with metastatic triple negative breast 
cancer. We single-cell sequenced a second sample taken from the same axillary node at the same time, aiming to 
validate the subclones previously identified from bulk DNA sequencing. From a total number of 143,108 nuclei, 
96 nuclei were fluorescence activated cell sorted (FACS) using gating to select for tumor cell nuclei, placed on 
a 96-well plate, and whole genome amplified (GenomiPhi). Indexed Nextera libraries were sequenced on the 
NextSeq using PE 150 bp mid-output flow cell. Six cells were removed due to extremely low numbers of reads 
after adapter removal (Supplementary Fig. 1). The sequencing data from another eleven nuclei was of low quality, 
as evidenced by a much larger fraction of short reads (Supplementary Fig. 2) and were excluded from our analysis. 
The remaining 79 cells were used for validation.

We use a Bayesian classifier (Supplementary Note 2) to assign each of the 79 cells into one of the three clones 
identified from the bulk sequencing data by THEMIS—one normal clone, one parent tumor clone and one child 
tumor clone. As input to the classifier, we use sequencing coverage on three types of genomic regions which are 
derived from the inferred genome-wide genotype for the two tumor clones (Fig. 1b), namely, clonal 2-copy (i.e. 
normal) regions, clonal 1-copy (i.e. loss of heterozygosity [LOH]) regions and subclonal 1-copy regions (Fig. 2b 

Figure 1. Example THEMIS input observations and the corresponding inferred outputs. (a) Inputs to 
THEMIS, including allelic ratio, log ratio and genomic position information. Somatic mutation sites are 
indicated by blue diamonds. (b) Outputs of THEMIS show that there are two tumor clones in the tumor biopsy, 
one parent tumor clone with 40% cell prevalence and one child tumor clone with 35% cell prevalence. The 
CNAs of the two tumor clones are visualized with color bars across the genome, and the genomic positions 
hosting an SNV are indicated by blue diamonds.
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and Supplementary Table 3). Clonal 2-copy regions provide the baseline measurement of sequencing coverage 
in normal regions. Clonal LOH regions distinguish tumor from normal. Subclonal LOH regions distinguish the 
child tumor clone from its parent. The Bayesian classifier identifies 2 normal cells (indicating that FACS gating 

Figure 2. Results of single cell validation experiments. (a) Predicted cell category from the Bayesian classifier: 
normal cell (green), parent tumor cell (red), child tumor cells (purple) and unknown due to low sequencing 
quality (grey). (b) Three different types of regions that we use to distinguish the three types of cells, namely 
clonal 2-copy regions, clonal LOH regions and subclonal LOH regions. (c) Histograms of the relative coverage 
rate in clonal LOH segments and subclonal LOH segments demonstrate cell 34 is normal, cell 26 is from the 
parent tumor clone and cell 1 is from the child tumor clone. Red dotted lines in the histograms indicate the 
expected coverage rates in the cells.
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worked), 57 parent tumor cells and 20 child tumor cells (Fig. 2a and Supplementary Table 4). The observed ratio 
of parent to child tumor cells (2.85) does not agree with the ratio inferred by THEMIS (1.14), which is likely 
attributable to the very small number of examined events and that the single cell analysis was performed in a 
separate sample taken at the same time. However, the histograms of the normalized coverage rate in the 99 clonal 
LOH segments and 119 subclonal LOH segments in the three types of cells validate that the three categories of 
nuclei agree with our model (Fig. 2c). For example, cell 34 has no LOH events in the clonal LOH region nor in 
the subclonal LOH region, and is therefore a normal cell. Cell 26 displays LOH events in the clonal LOH region, 
but not in the subclonal LOH region, and is therefore identified as belonging to the parent tumor clone. Cell 1 has 
LOH events both in clonal and subclonal LOH regions, and is therefore identified as belonging to the child tumor 
clone. The histograms of the coverage rates from the aggregated 57 parent tumor cells show similar patterns to 
that of cell 26, whereas the histograms from the aggregated 20 child tumor cells show similar patterns as cell 1 
(Supplementary Fig. 3). Therefore, our single cell experiment successfully validates the subclones identified by 
THEMIS.

Joint analysis over multiple biopsies from the ITOMIC study. The Intensive Trial of OMics In Cancer 
(ITOMIC-001) enrolls patients with metastatic triple negative breast cancer in whom biopsies of multiple meta-
static sites are performed repeatedly over time10. For each patient, multiple biopsies are evaluated using next gen-
eration sequencing. We performed joint heterogeneity analysis on three biopsies from Patient 1 (Fig. 3a). Patient 
1 was originally diagnosed with triple-negative breast cancer in February 2011, and enrolled in ITOMIC-001 in 

Figure 3. Experiments and results from joint analysis of three biopsies from the same patient. (a) The 
collection of the three biopsies from the same patient during three stages of treatment and the inferred tumor 
clones in the biopsies. (b) The recovered phylogenetic tree and the mutations accumulated on each edge. The 
mutations are shown on a genome-wide plot, and the two numbers on each edge are the number of germline 
heterozygous sites affected by these CNAs and the number of SNVs. (c) Signal pathways (a simplified version 
of signal transduction pathways from Wikipedia), and the number of genes with copy number changes (copy 
gain and copy loss) in different stages of cancer progression. *Denotes at least one of the mutated genes is a core 
component of the signaling pathway.
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October 2013. The patient then received three different treatments, including cisplatin (between study days 12 
and 125), an investigational PARP inhibitor veliparib (between study days 126 and 194), and the kinase inhibitor 
ponatinib (from study day 195 until the time of her death on study day 250). The first biopsy B1 was sampled 
from an involved right axillary lymph node, collected on study Day 7 (before cisplatin). The second biopsy B2 
was sampled from the same right axillary lymph node on study Day 125 (after cisplatin). The third sample B3 was 
from a left peribronchial lymph node, collected at autopsy following the patients death on study day 250 (post 
ponatinib).

We followed a five-step procedure to recover the phylogenetic tree from the three tumor biopsies (see Methods 
for details), which involves enumerating all possible candidate phylogenies from individual biopsy analysis and 
then selecting the best phylogeny by likelihood (Supplementary Note 3). The recovered phylogenetic tree (Fig. 3b) 
reveals the relationships among the recovered clones and the mutations accumulated at each stage of cancer 
progression. Parent clone A is shared by all three biopsies, and child clones (B, C, and D) inherit the mutations 
present in parent clone A and acquire new mutations of their own. Although clones B, C and D occur in sep-
arate biopsies, clones C and D appear to be descendants of clone B, meaning that the new mutations detected 
in later biopsies occurred within the child tumor clones. In addition to clones A, B, C and D, the phylogenetic 
tree includes an internal node for an inferred intermediate clone (CD) hosting the mutations shared between 
clone C and clone D, and corresponding to a splitting point between clones C and D in cancer progression. On 
the phylogenetic tree, we also label the new CNAs and SNVs on the edges. We visualize these mutations on a 
genome-wide plot, and provide the number of germline heterozygous sites affected by these CNAs and the num-
ber of the SNVs (Fig. 3b). The mutations on the edges of the phylogenetic tree reveal the mutation accumulation 
history of this patient and can help in tracking mutations related to treatment resistance. By the time the patient 
joined the study, there had been two major phases of mutation accumulation, one corresponding to the mutations 
accumulated in clone A and the other corresponding to mutations accumulated in clone B. Comparing the two 
phases, more SNVs emerged in the second phase. After joining the study and receiving further treatments, addi-
tional mutations emerged. The mutations on the edges between clone B and clone C emerged during treatment 
with cisplatin, whereas those on the edge between clone CD and clone D emerged during treatment with the 
PARP inhibitor veliparib (without response) followed by treatment with the kinase inhibitor ponatinib (which did 
yield a partial response). Because veliparib failed to affect tumor growth, we attribute the changes associated with 
the CD → D transition to ponatinib, which was given based on the presence of two activating mutations affecting 
FGFR2 (S252W;Y375C) (manuscript submitted).

A number of intriguing patterns were revealed when we looked at the mutations associated with different 
phases of treatment. First, many of the genes in CNA regions are known to be related to cancer. On the CNAs 
associated with the three treatments, including 147 CNAs during the treatment with cisplatin and 98 CNAs dur-
ing the treatment with veliparib and ponatinib, we identify 848 genes and 519 genes, respectively. We queried 
these genes on the NCBI gene website (www.ncbi.nlm.nih.gov/gene) and retrieved 186 genes and 175 genes, 
respectively, that are known to be related to cancer in the literature. The retrieved genes are related to many 
important cancer signaling pathways (Fig. 3c). On some of the cancer signaling pathways (i.e., MEK/MAPK/Erk, 
PI3K/Akt/mTor, NF-κB, and p53), core genes (i.e., MAP2K7, PIK3C2A, PIK3CD, PIK3CB, TNFSF9, TNFSF14, 
NRAS, GSK3B, Notch3, TP53TG5 and SNAI1) experienced copy-number changes during different phases of 
treatment. In addition, the genes mutated during different phases of treatment show patterns that are potentially 
illustrative of different therapeutic responses. The proportion of genes experiencing copy number gains in later 
stages (i.e., on the edge CD → D, during the treatments with veliparib and ponatinib) is much higher than that 
in earlier stage (on the edges B → CD and CD → C, during the treatment with cisplatin), and the proportion 
difference is more dramatic in important cancer signaling pathways, including MEK/MAPK/Erk, PI3K/Akt/mTor 
and NF-κB. These genes mutated in the different phases of treatment also showed different functional focuses. 
According to DAVID11,12, the top function clusters among the genes mutated in the earlier stage are rho GTPase 
activation, growth factor, DNA damage and ErbB signaling. The top function clusters from the genes mutated in 
the later stage are DNA damage, ras signaling, nucleotide-binding, zinc-finger, neurotrophin signaling, and endo-
cytosis. Third, a number of SNVs occurred on or near the genes known to be related to cancer signaling pathways, 
which allows us to investigate them together with the genes mutated due to copy number changes. During treat-
ment with cisplatin, one SNV occurred near an intron/extron boundary within BIN1, which is known to interact 
with the myc oncoprotein as a putative tumor suppressor. During the treatments with veliparib and ponatinib, 
SNVs occurred on or near LATS1 (a core component of Hippo-YAP pathway), MGMT (related to DNA damage), 
IL17RB (related to NF-κB signaling) and APCDD1L (related to wnt signaling), all of which are known to be 
related to breast cancer. Although additional experiments are needed for further validation, THEMIS provides a 
powerful computational tool to generate hypotheses from multiple biopsy DNA sequencing data.

Discussion
THEMIS offers a powerful and extensible modeling framework to jointly capture different types of genomic 
aberrations in the analysis of multiple biopsies. The integration of CNAs and SNVs in the heterogeneity analysis 
increases the accuracy of clonal inference relative to previous methods that consider only single types of muta-
tions. For example, if we observe an allelic ratio 0.3 at one genomic position, then the cell prevalence of the SNV 
should be 60% if the corresponding genotype is AB, but the prevalence should be 85.7% if the genotype is AAB. In 
such cases, methods that fail to jointly consider copy number information and SNVs can be misled. In addition, 
the integration of multiple types of mutations allows us to understand cancer comprehensively, and to address 
important questions such as how the different types of mutations cooperate with each other and what roles they 
play at different stages of cancer progression.

The joint analysis over multiple biopsies from the same patient provides a complete picture of mutation pro-
gression in the patient, which may shed light on how tumor cells escape treatment and metastasize. The ability to 

http://www.ncbi.nlm.nih.gov/gene
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analyze multiple biopsies jointly will be increasingly important as DNA sequencing costs continue to decrease. 
The current turnaround time of analyzing the three biopsies with our model, including both data preprocessing 
and model running, is just a few hours.

Because THEMIS is built using a general purpose graphical models toolkit, the approach is easy to extend to 
alternative model architectures. For example, during review of this manuscript, one reviewer suggested that the 
THEMIS model likely over-segments the genome. We verified this effect empirically and then demonstrated the 
flexibility of the THEMIS framework by modifying the model to incorporate a user-specified constraint on the 
number of segments (Supplementary Note 4). In addition, GMTK provides flexible calculation in both estimation 
and inference, including both exact and approximate inference algorithms. Based on the available computing 
resources, the user can easily trade memory with running time. Using this modeling and algorithmic flexibility, 
we plan in future work to extend THEMIS to account for more complex types of mutations, such as chromo-
thripsis and chromoplexy. We also plan to incorporate a more principled phylogeny reconstruction method into 
THEMIS. Ultimately, THEMIS will provide a testbed for model development by us and others interested in mod-
eling the full complexity of tumor evolution.

Data availability. The bulk DNA sequencing data and the single cell DNA sequencing data used in our anal-
ysis can be downloaded from Sequence Read Archive with accession SRP102304.

Software availability. THEMIS is available at https://github.com/jieliu6/THEMIS.

Methods
Data preprocessing. We assume that next generation sequencing data was mapped to the reference 
genome, and the mapped BAM files are ready for analysis. Pre-processing of the data consists of three steps 
(Supplementary Fig. 4). First, we identify the genomic sites that will be included in the model. Our model cap-
tures both CNA events and SNV events; therefore, two types of genomic sites are included. For CNAs, we con-
sider germline heterozygous sites since we can monitor not only absolute copy number changes (via tumor-normal 
read depth difference), but also what happens to the two individual copies (via allelic imbalance). For SNVs, we 
consider the somatic mutation sites which host an SNV event in any of the tumor biopsies. From the germline 
(normal) BAM file, we use Samtools to identify germline heterozygous sites. From the tumor and normal BAM 
files, we use MuTect13 to identify somatic mutation sites. Second, we filter out unreliable sites and reads using 
MuTect13. Third, we adjust for GC content and mappability. Short reads from next generation sequencers are 
not uniformly distributed across the genome—more reads are expected to be obtained from regions with higher 
GC content and mappability. The bias cannot fully be adjusted by normalizing with another next generation 
sequencing library (e.g. from a normal biopsy) from the same patient14. We therefore use HMMcopy15 to adjust 
GC content and mappability in the read counts.

Modeling choices in THEMIS. Unlike previous methods such as phyloWGS5, SPRUCE6 and Canopy7, 
which capture CNA or SNV events as the entities in the model, our model THEMIS and its predecessor TITAN 
directly model individual genomic positions as the entities in the model and therefore have the ability to perform 
CNA calling during tumor heterogeneity analysis. Both THEMIS and TITAN are dynamic graphical models 
with each frame representing a single genomic position, with CNA events captured by hidden Markov chains. 
Therefore, THEMIS inherits five key assumptions from TITAN:

 1. Two primary observed variables—allelic imbalance and the tumor-normal read depth ratio—reflect the 
underlying somatic genotype of the tumor at germline heterozygous sites.

 2. CNA events span multiple contiguous germline heterozygous sites.
 3. The observed NGS data comes from heterogeneous cellular populations, including normal cells and tumor 

subpopulations.
 4. Two mutation events are observed at the same cellular prevalence if and only if the two events come from 

the same subpopulation.
 5. Only one CNA event can arise in only one tumor subpopulation at each genomic position.

Note that Assumption 4, although used by many tumor heterogeneity models, can be invalid if two different 
tumor subclones in a tumor have the same cellular prevalence. The purpose of introducing Assumption 5 is to 
make the heterogeneity model simple and identifiable; however, this assumption does prevent us from modeling 
more complicated situations in which multiple CNAs arise in the same genomic region.

We usually have around 30–50 thousand germline heterozygous sites and several hundred somatic mutation 
sites in whole-exome sequencing data from a single biopsy. With reasonable sequencing depth (greater than 
∼100 reads per position, on average) the underlying genotypes (i.e. the type of the CNA event) estimated from 
the contiguous germline heterozygous sites can be inferred accurately. Integrating the somatic mutation sites and 
germline heterozygous sites using two factorial Markov chains allows us to model sites that harbor both a CNA 
event and a somatic mutation. In the situation when the observed variables at one somatic mutation site suggest 
that the genotype or the subclone assignment at that site disagrees with the neighboring germline heterozy-
gous sites, THEMIS can still infer the correct hidden genotype and subclone assignment based on the observed 
variables at the somatic mutation site. Furthermore, because there will typically be many contiguous germline 
heterozygous sites before and after this somatic mutation site, the disagreement will not be propagated to nearby 
germline heterozygous sites.

https://github.com/jieliu6/THEMIS
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We adopted these particular modeling choices and assumptions based on the sequencing quality and depth in 
our data. However, we encourage users to adjust these modeling choices and assumptions as appropriate for their 
own data. The extensible modeling platform employed by THEMIS should make it easy to implement variants of 
the model proposed here.

Structure of the THEMIS model. The THEMIS dynamic graphical model can be represented using a 
standard “plate” representation. In Fig. 4, the “Prologue” represents the start of the model, and the “Chunk” rep-
resents all random variables associated with a single genomic position. In practice, the chunk is copied multiple 
times so that the length of the model matches the length of the observed data (i.e., the total number of genomic 
positions). In the figure, each vertex represents one random variable at a particular genomic position. If a vertex is 
shaded, then the corresponding random variable is observed; otherwise, the random variable is hidden. The vari-
ables and parameters used in the model are explained in the next two sections and summarized in Supplementary 
Table 5. We use capital letters to denote random variables and the corresponding lower-case letters to denote the 
particular values of the random variables. If a lower case letter has a bar on top, then it is observed; otherwise, it 
is inferred.

The backbone of the model consists of two Markov chains, i.e., two hidden variables at each site t, corre-
sponding to the unknown genotype of the mutation (Gt) and an indicator (Zt) of which clone the mutation 
occurs in. The two Markov chains capture the phenomenon that CNA events span multiple contiguous 
genomic positions, and the corresponding most probable states that we infer from the observed variables are 
essentially the output of our THEMIS model. At site t and in biopsy m, a set of observed variables represent the 
allelic ratio (Am,t) and the log ratio between tumor read depth and normal read depth (Lm,t). Other useful infor-
mation about the genomic position is also captured in the model as observed variables, including the type of 
site (Dt), an indicator variable for the first site of a chromosome (St), and the distance from its previous site 
(Ht). For each biopsy m, the model contains an additional set of |Z| hidden variables, … | |P P P, , ,m m m

Z1 2 , denoting 
the prevalence levels of the clones.

The conditional independence relationships among the variables are encoded by the edges either within a 
genomic position or between two adjacent genomic positions. At each site, the model specifies the probability 
of the observed variables given the hidden variables, which captures how different genotypes and the occur-
rence in different clones, in combination, make the allelic ratio and log ratio different in tumor biopsies. At a 
germline heterozygous site (where Dt = 0), the allelic ratio reflects how the allelic ratio is different from 0.5, 
which is expected in a normal cell. At a somatic mutation site (where Dt = 1), the allelic ratio reflects how the 
allelic ratio is different from 0, which is expected in a normal cell. Therefore, the parents of the allelic ratio 
(Am,t) include the genotype (Gt), the clone index (Zt), the prevalence levels ( … | |P P P, , ,m m m

Z1 2 ) and the type of site 
(Dt). Because the log ratio of the tumor-normal read depth difference (Lm,t) does not depend on the type of site, 
its parents include the genotype (Gt), the clone index (Zt), and the prevalence levels ( … | |P P P, , ,m m m

Z1 2 ). Between 
any two adjacent sites, we specify the transition probability between genotypes and the transition probability 
between clones. The variable Ht is the distance (in base pairs) between site t and its previous site t − 1. We set 
transition parameters (for both Gt and Zt) as functions of ht (the observed value of Ht) to capture the phenom-
enon that the chance Gt and Gt − 1 agree decreases as ht increases (and similarly for Zt and Zt − 1). Therefore, Ht 
is a parent of Gt and Zt at a non-start-of-a-chromosome site t. When the current site is the start of a chromo-
some (St = 1), Gt and Zt do not depend on Gt − 1 and Zt − 1, but follow prior distributions (πG and πZ). Therefore, 
St is also a parent of Gt and Zt.

Figure 4. The THEMIS model.
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Variables in the THEMIS model. The variables in the THEMIS model are either observed variables or 
hidden variables. The observed variables are directly obtained from the data, whereas the most probable states 
of the hidden variables must be inferred, given the observed variables and the trained parameters. Each frame of 
the THEMIS model contains five observed variables. Two of these are key signals to detect mutations, and they 
are modeled as Gaussians:

•	 The allelic ratio Am,t at site t in biopsy m (∀m = 1, …, M) is modeled as a Gaussian variable, i.e.,

µ σ= | = = = = = .P A a Z z G g P p D d a( , , , ) ( ; , )
(1)m t t t m

z
m
z

t A m g z p A m d, , , , , , ,
2

m
z

The mean parameter µ
A m g z p, , , ,

m
z associated with this Gaussian is set to

µ =
+ −

+ −

n p n p

n p n p

(1 )

(1 )
,

(2)
A m g z p

g
alt

m
z

N
alt

m
z

g m
z

N m
z, , , ,

m
z

where ng is the DNA copy number in tumor cells with genotype g, nN is the DNA copy number in normal cells, 

ng
alt is the copy number of the alternative allele in tumor cells with genotype g, and nN

alt is the copy number of 

the alternative allele in normal cells (Supplementary Table 6). The mean parameter µA m g z p, , , ,
m
z is not estimated 

from data, but determined by the states of the hidden variables Gt, Zt, and Pm
Zt and the observed dt. The vari-

ance parameter σA m d, ,
2 , however, is estimated from data.

•	 The log ratio of tumor-normal read depth at site t in biopsy m (∀m = 1, …, M), denoted by Lm,t, is modeled 
as a Gaussian variable, i.e.,

µ σ= | = = = = .P L l Z z G g P p l( , , ) ( ; , )
(3)m t t t m

z
m
z

L m g z p L m, , , , , ,
2

m
z

The mean parameter µ
L m g z p, , , ,

m
z is set to

µ =
+ −

+
n p n p

n
clog

(1 )
,

(4)
L m g z p

g m
z

N m
z

N
m, , , , 2

m
z

where nN is copy number in normal cells (set to be 2 by default), and ng is the DNA copy number in tumor 
cells with genotype g. The parameter cm captures the sequencing depth difference in the tumor biopsy and the 
normal biopsy and the read number discrepancy due to ploidy change in the tumor biopsy. Therefore, the 
mean parameter µL m g z p, , , ,

m
z is also not estimated from data, but determined by the states of the hidden varia-

bles Gt, Zt, and Pm
Zt. The variance parameter σL m,

2  again is estimated from data.

The remaining three observed variables provide information about the current genomic position, and they 
are discrete:

•	 The variable Ht is the distance (in base pairs) between site t and site t − 1. The effect of Ht is interesting since, 
while there is an equal number of graphical model frames between any two sites, the actual duration between 
them still effects the statistics of the underlying Markov chains since both Gt and Zt directly depend on Ht. 
THEMIS, therefore, expresses a kind of irregularly spaced dynamic graphical model within the frame work of 
a regularly spaced dynamic graphical model. Moreover, THEMIS does this more efficiently than an alterna-
tive where the number of graphical model frames between sites t and t − 1 is proportional to ht, an approach 
that would be significantly more costly computationally. Supplementary Fig. 5 shows a histogram of hlog( ))t  
indicating that there is a diverse set of lengths between successive sites — the diversity suggests that inter-site 
length can have a significant influence on the Markov chains’ transition matrices.

•	 The site type Dt at site t is a Boolean with Dt = 0 denoting a germline heterozygous site and Dt = 1 denoting a 
somatic mutation site which hosts a SNV event.

•	 The Boolean variable St denotes the start of a chromosome. When the current site is the start of a chromo-
some (St = 1), Gt and Zt do not depend on Gt − 1 and Zt − 1, but follow uniform prior distributions.

In addition, each frame of the THEMIS model contains two hidden variables.

•	 The genotype Gt at site t is a discrete variable, which corresponds to all possible genotypes up to a certain 
number of copies. We consider all possible genotypes up to five copies (Supplementary Table 6).

•	 The clone index variable Zt at site t is a discrete variable of |Z| possible values (i.e., Zt ∈ {1, …, |Z|}), where |Z| 
is pre-specified by the user.

Finally, the model contains a set of hidden variables that are “tied” across frames. For clone z in biopsy m (∀m = 
1, …, M), the prevalence level variable Pm

z  is a discrete variable of |P| possible values, where |P| is pre-specified by the 
user. The default |P| is 20, corresponding to 20 equally spaced prevalence levels between 0 and 1 (i.e. 0.05, 0.10, …, 
and 1.00). THEMIS does not model clone prevalence as a continuous variable because clone prevalence is a parent 
of other variables (e.g. allelic ratio), and a hidden continuous variable cannot appear as a parent of other variables in 
a dynamic graphical model.
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Parameters in the THEMIS model. Some parameters in the THEMIS model need to be specified by the 
user, whereas other parameters are estimated from data. Specifically, the user must specify the following parame-
ters: the number of biopsies used in the analysis (M), the number of subclones (|Z|), the maximum copy number 
in the mutations (cmax

T ), the number of prevalence levels (|P|), and the log-ratio offset in biopsy m due to ploidy 
and sequencing depth change (cm, ∀m = 1, …, M). In our experiments, we first run THEMIS with an initial esti-
mate of cm derived by examining the bivariate plot of allelic ratio and log ratio at germline heterozygous sites 
(Supplementary Fig. 6). Specifically, cm is estimated by identifying the center of the normal genotype cluster on 
the log ratio axis. After running THEMIS, we re-estimate cm as the average log-ratio on the sites whose genotypes 
are predicted to be “AB” (i.e. no CNA). This new estimate is used in a second run of THEMIS. In practice, the user 
can also leverage other ploidy estimation tools to get the initial estimate of cm or run THEMIS multiple times with 
multiple initial estimates and choose with the one with highest likelihood. Three sets of parameters are estimated 
from data via the standard expectation-maximization (EM) algorithm for dynamic graphical models:

 1. The variance of allelic ratio in biopsy m (∀m = 1, …, M) on germline heterozygous sites, denoted by σA m, ,0
2 , 

the variance of allelic ratio in biopsy m (∀m = 1, …, M) on somatic mutation sites, denoted by σA m, ,1
2 , and 

the variance of log ratio in biopsy m (∀m = 1, …, M) on each site, denoted by σL m,
2 .

 2. The transition probability from genotype j at site t − 1 to genotype i at site t (i, j ∈ {1, …, |G|), denoted by 
Q i j h( , ; )G t  and transition probability from clone j at site t − 1 to clone i at site t (i, j ∈ {1, …, |Z|), denoted 
by Q i j h( , ; )Z t . We model Q i j h( , ; )G t  and Q i j h( , ; )Z t  as parametric functions of ht, the distance (in base 
pairs) between site t and site t − 1. We first define the probability of staying at the same genotype j, denoted 
by ρ j h( ; )

G t , as




ρ

σ

σ
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| |
+
| |

j h
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G G
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where σx( ; 0, )G j,
2  is the probability density of a Gaussian distribution with mean 0 and variance σG j,
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Note that we estimate σG j,
2  (∀j = 1, …, |G|) and σZ j,

2  (∀j = 1, …, |Z|) from data in a maximum likelihood 
fashion. The way we parameterize the transition probabilities captures the phenomenon that the probabili-
ty of staying at the same genotype decreases as a monotone function of the distance from the previous site, 
and the rate it decreases is parametrized by σG j,

2 . Therefore, we estimate the decreasing speed (i.e. σG j,
2 ) 

adaptively from the data (unlike user-prespecified transition probabilities in TITAN), and the speed is 
different for different genotypes since different mutation events may occur with different lengths on the 
genome (unlike the tied transition probabilities in TITAN).

 3. The prior distributions of genotypes, clones and the cell prevalence levels of the clones (denoted by πG, πZ 
and πP, respectively). These prior distributions are responsible for the frames that correspond to the starts 
of the chromosomes. These prior distributions are initialized as uniform distributions, and trained from 
the data along with other parameters.

We use Ω to denote the set of parameters in the joint distribution specified by the model, namely 
σ σ σ σ σ π π πΩ = ∀ = … ∀ = … | |m M j Z{ , , , , , , , , 1, , , 1, , }A m A m L m G j Z j G Z P, ,0

2
, ,1

2
,

2
,

2
,

2 . In the estimation step, we use 
the EM algorithm to estimate the parameters and find a (local) maximum, denoted by Ω̂, for

= = = = = Ω .
Ω

A a L D d S S H hargmaxPr( , , , , ; )
(9)

M T M T M T M T T T T T T T1: ,1: 1: ,1: 1: ,1: 1: ,1: 1: 1: 1: 1: 2: 2:

In the inference step, we infer the most probable states of the hidden variables given the estimated parameters 
Ω̂, i.e.,
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The inferred most probable sequence of hidden variables, as the output of our algorithm, provide the hetero-
geneity analysis results, i.e., a number of subclones and their genotypes and cell prevalences (Fig. 1b).

Selecting the number of subclones. THEMIS requires the user to specify the number of subclones in the 
biopsies before running the model. There are three ways of identifying the number of subclones from the data. 
The first method is a naive visualization method. If the biopsy is well sequenced, then the number of subclones 
can be directly identified from the bivariate plot (allelic ratio against log ratio at germline heterozygous sites) of 
the biopsy by observing different prevalence levels of the LOH events. We take one tumor biopsy (biopsy B1 in 
ITOMIC study) as an example, whose bivariate plot is provided in Supplementary Fig. 6. It can be observed that 
there are two major LOH prevalence levels in the plot. Therefore, we can assume that there are two tumor sub-
clones in the biopsy.

Another way of choosing the number of subclones is to use the Bayesian information criterion (BIC)16. BIC 
is defined as

= − +BIC L k n2 ln ln( ), (11)

where ln L is the log likelihood of the data, k is the degree of freedom, and n is the number of data points. We 
choose the subclone number which produces the smallest BIC score. When we run the 2-subclone model and the 
3-subclone model on the tumor biopsy B1, BIC scores are −476,725 and −464,710, respectively. Therefore, we 
can assume there are two tumor subclones in the biopsy based on the BIC scores.

A third way of choosing the number of subclones is to use cross-validation. Suppose that we use three-fold 
cross-validation. We randomly partition the chromosomes into three sets. In each training-testing split, we use 
the data from two sets as the training data and the remaining set as the testing data. With the estimated param-
eters from training data, we run Viterbi algorithm on the testing data, and choose the subclone number which 
produces the largest averaged log-likelihood (a.k.a., the Viterbi score in GMTK) on testing data. In both simu-
lated data (in Simulations 1 and 2, we simulated two tumor subclones and three tumor subclones, respectively) 
and real data (biopsy B1 in the ITOMIC study), we observed that the three methods provide the correct results 
(Supplementary Table 7).

In practice, one may use any of the three methods or a combination of the three methods to set the number 
of subclones. Note that although the naive visualization method is straightforward, it may produce inaccurate 
estimates if the sequencing depth of the biopsy is low or when the prevalence levels of two subclones are close 
to each other. Cross-validation is more robust compared with BIC, but requires additional computational cost. 
When BIC and cross-validation are being used, we recommend starting with a small number of subclones (e.g. 
2) and increase the number until the evaluation criteria deteriorate. For example, if a 2-subclone model produces 
a lower BIC (or higher averaged ln L in cross-validation) than a 3-subclone model, it is not necessary to run the 
4-subclone model.

Joint analysis of multiple biopsies from the same patient. The joint analysis of multiple biopsies in 
THEMIS is done by first enumerating candidate phylogenetic trees, encoding each tree in the conditional proba-
bility tables associated with variables Am,t and Lm,t, and then selecting the tree whose associated model yields the 
highest likelihood. During the enumeration phase, we make three assumptions. First, we assume that we have 
the statistical power to discern all the clones from individual biopsies and estimate their prevalences. Second, we 
assume that we can identify shared clones between biopsies by computing and thresholding similarities between 
the clones. Third, if the sum of the prevalences (pa and pb) of clones a and b is greater than 1.0 in at least one 
biopsy, and pa > pb in all biopsies where clones a and b are present, then we assume that clone a is an ancestor of 
clone b. The first two assumptions ensure that the ground truth structure is contained in the candidate structures. 
The third assumption helps us reduce the number of candidate structures. Users are also encouraged to use other 
information, such as the time and physical locations of the biopsies, to eliminate candidate structures. Joint anal-
ysis over multiple biopsies can be carried out in the following five steps.

 1. Analyze biopsies separately with THEMIS and identify the genotype and prevalence of each clone within 
each biopsy.

 2. Compute similarities between all pairs of clones from different biopsies and merge similar clones.
 3. Identify consistent parent-child relationships based on the individually estimated prevalences using the 

third assumption above.
 4. Enumerate all phylogenies consistent with those relationships and run THEMIS accordingly.
 5. Select the phylogeny with maximum likelihood.

References
 1. Shah, S. P. et al. The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature 486, 395–399 

(2012).
 2. Nowell, P. C. The clonal evolution of tumor cell populations. Science 194, 23–28 (1976).
 3. Gerlinger, M. et al. Cancer: Evolution within a lifetime. Annual Review of Genetics 48, 215–236 (2014).



www.nature.com/scientificreports/

1 2SCIENTIFIC REPORTS | 7: 16943  | DOI:10.1038/s41598-017-16813-4

 4. Frampton, G. M. et al. Development and validation of a clinical cancer genomic profiling test based on massively parallel dna 
sequencing. Nature Biotechnology 31, 1023–1031 (2013).

 5. Deshwar, A. G. et al. Phylowgs: Reconstructing subclonal composition and evolution from whole genome sequencing of tumors. 
Genome Biology 16 (2015).

 6. El-Kebir, M., Satas, G., Oesper, L. & Raphael, B. J. Inferring the mutational history of a tumor using multi-state perfect phylogeny 
mixtures. Cell Systems 3, 43–53 (2016).

 7. Jiang, Y., Qiu, Y., Minn, A. J. & Zhang, N. R. Assessing intratumor heterogeneity and tracking longitudinal and spatial clonal 
evolutionary history by next-generation sequencing. Proceedings of the National Academy of Sciences 113, E5528–E5537 (2016).

 8. Bilmes, J. & Zweig, G. The Graphical Models Toolkit: An open source software system for speech and time-series processing. In 
Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (2002).

 9. Ha, G. et al. Titan: inference of copy number architectures in clonal cell populations from tumor whole-genome sequence data. 
Genome Research 24, 1881–1893 (2014).

 10. Blau, C. A. et al. A distributed network for intensive longitudinal monitoring in metastatic triple-negative breast cancer. Journal of 
the National Comprehensive Cancer Network 14, 8–17 (2016).

 11. Huang, D. W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using david bioinformatics 
resources. Nature Protocols 4, 44–57 (2009).

 12. Huang, D. W., Sherman, B. T. & Lempicki, R. A. Bioinformatics enrichment tools: paths toward the comprehensive functional 
analysis of large gene lists. Nucleic Acids Research 37, 1–13 (2009).

 13. Cibulskis, K. et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nature Biotechnology 
31, 213–219 (2013).

 14. Benjamini, Y. & Speed, T. P. Summarizing and correcting the gc content bias in high-throughput sequencing. Nucleic Acids Research 
40, gks001 (2012).

 15. Ha, G. et al. Integrative analysis of genome-wide loss of heterozygosity and monoallelic expression at nucleotide resolution reveals 
disrupted pathways in triple-negative breast cancer. Genome Research 22, 1995–2007 (2012).

 16. Schwarz, G. Estimating the dimension of a model. Annals of Statistics 6, 461–464 (1978).
 17. Yau, C. et al. A statistical approach for detecting genomic aberrations in heterogeneous tumor samples from single nucleotide 

polymorphism genotyping data. Genome Biology 11, R92 (2010).
 18. Letouzé, E., Allory, Y., Bollet, M. A., Radvanyi, F. & Guyon, F. Analysis of the copy number profiles of several tumor samples from 

the same patient reveals the successive steps in tumorigenesis. Genome Biology 11, 1–19 (2010).
 19. Greenman, C. D. et al. Estimation of rearrangement phylogeny for cancer genomes. Genome Research 22, 346–361 (2012).
 20. Carter, S. L. et al. Absolute quantification of somatic dna alterations in human cancer. Nature Biotechnology 30, 413–421 (2012).
 21. Strino, F., Parisi, F., Micsinai, M. & Kluger, Y. TrAp: a tree approach for fingerprinting subclonal tumor composition. Nucleic Acids 

Research 41, e165 (2013).
 22. Oesper, L., Mahmoody, A. & Raphael, B. J. THetA: inferring intra-tumor heterogeneity from high-throughput DNA sequencing 

data. Genome Biology 14, R80–R80 (2013).
 23. Oesper, L., Satas, G. & Raphael, B. J. Quantifying tumor heterogeneity in whole-genome and whole-exome sequencing data. 

Bioinformatics 30, 3532–3540 (2014).
 24. Purdom, E. et al. Methods and challenges in timing chromosomal abnormalities within cancer samples. Bioinformatics 29, 

3113–3120 (2013).
 25. Yau, C. OncoSNP-SEQ: a statistical approach for the identification of somatic copy number alterations from next-generation 

sequencing of cancer genomes. Bioinformatics 29, 2482–2484 (2013).
 26. Roth, A. et al. Pyclone: statistical inference of clonal population structure in cancer. Nature Methods (2014).
 27. Miller, C. A. et al. Sciclone: Inferring clonal architecture and tracking the spatial and temporal patterns of tumor evolution. PLoS 

Computational Biology 10, e1003665 (2014).
 28. Zare, H. et al. Inferring clonal composition from multiple sections of a breast cancer. PLoS Computational Biology 10, e1003703 (2014).
 29. Fischer, A., Vázquez-Garca, I., Illingworth, C. J. & Mustonen, V. High-definition reconstruction of clonal composition in cancer. Cell 

Reports (2014).
 30. Schwarz, R. F. et al. Phylogenetic quantification of intra-tumour heterogeneity. PLoS Computational Biology 10, e1003535 (2014).
 31. Qiao, Y. et al. Subcloneseeker: a computational framework for reconstructing tumor clone structure for cancer variant interpretation 

and prioritization. Genome Biology 15, 443 (2014).
 32. Hajirasouliha, I., Mahmoody, A. & Raphael, B. J. A combinatorial approach for analyzing intra-tumor heterogeneity from high-

throughput sequencing data. Bioinformatics 30, i78–i86 (2014).
 33. Fan, X., Zhou, W., Chong, Z., Nakhleh, L. & Chen, K. Towards accurate characterization of clonal heterogeneity based on structural 

variation. BMC Bioinformatics 15, 299 (2014).
 34. Jiao, W., Vembu, S., Deshwar, A. G., Stein, L. & Morris, Q. Inferring clonal evolution of tumors from single nucleotide somatic 

mutations. BMC Bioinformatics 15, 35 (2014).
 35. Sengupta, S. et al. Bayclone: Bayesian nonparametric inference of tumor subclones using NGS data. In Pacific Symposium on 

Biocomputing. Pacific Symposium on Biocomputing, vol. 20, 467 (World Scientific, 2015).
 36. Malikic, S., McPherson, A. W., Donmez, N. & Sahinalp, C. S. Clonality inference in multiple tumor samples using phylogeny. 

Bioinformatics 31, 1349–1356 (2015).
 37. Popic, V. et al. Fast and scalable inference of multi-sample cancer lineages. Genome Biology 16, 1 (2015).
 38. El-Kebir, M., Oesper, L., Acheson-Field, H. & Raphael, B. J. Reconstruction of clonal trees and tumor composition from multi-

sample sequencing data. Bioinformatics 31, i62–i70 (2015).

Acknowledgements
The authors would like to thank the patient and her family. We gratefully acknowledge the anonymous reviewers 
for their valuable feedback. We also gratefully acknowledge the support from the Washington Research 
Foundation Fund for Innovation in Data-Intensive Discovery, the Moore/Sloan Data Science Environments 
Project at the University of Washington, the Amazon Research Credits program, and South Sound CARE.

Author Contributions
J.L., J.A.B. and W.S.N. conceived the method. J.L. and J.T.H. performed the analysis. J.L., W.S.N., and C.A.B. wrote 
the manuscript. E.M.M., C.S., M.O.D., and C.A.B. contributed experimental results. S.B., V.K.G., and C.A.B. 
contributed to the clinical trial. R.M.D., C.L., E.M.M., D.P., P.R., and J.S. acquired single cell sequencing data.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-017-16813-4.

Competing Interests: The authors declare that they have no competing interests.

http://dx.doi.org/10.1038/s41598-017-16813-4


www.nature.com/scientificreports/

13SCIENTIFIC REPORTS | 7: 16943  | DOI:10.1038/s41598-017-16813-4

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2017

http://creativecommons.org/licenses/by/4.0/

	Comprehensive statistical inference of the clonal structure of cancer from multiple biopsies

	Results

	The Model. 
	Simulation results. 
	Validation via single-cell DNA sequencing. 
	Joint analysis over multiple biopsies from the ITOMIC study. 

	Discussion

	Data availability. 
	Software availability. 

	Methods

	Data preprocessing. 
	Modeling choices in THEMIS. 
	Structure of the THEMIS model. 
	Variables in the THEMIS model. 
	Parameters in the THEMIS model. 
	Selecting the number of subclones. 
	Joint analysis of multiple biopsies from the same patient. 

	Acknowledgements

	Figure 1 Example THEMIS input observations and the corresponding inferred outputs.
	Figure 2 Results of single cell validation experiments.
	Figure 3 Experiments and results from joint analysis of three biopsies from the same patient.
	Figure 4 The THEMIS model.
	Table 1 Software tools for characterizing within-patient and intra-tumor heterogeneity and their features, including whether they capture SNVs, CNAs and structural variants (SVs), whether they support multiple biopsy analysis, and their key models and alg


