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CaMKII induces permeability transition through
Drp1 phosphorylation during chronic b-AR
stimulation
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Mitochondrial permeability transition pore (mPTP) is involved in cardiac dysfunction during

chronic b-adrenergic receptor (b-AR) stimulation. The mechanism by which chronic b-AR

stimulation leads to mPTP openings is elusive. Here, we show that chronic administration

of isoproterenol (ISO) persistently increases the frequency of mPTP openings followed

by mitochondrial damage and cardiac dysfunction. Mechanistically, this effect is mediated

by phosphorylation of mitochondrial fission protein, dynamin-related protein 1 (Drp1), by

Ca2þ/calmodulin-dependent kinase II (CaMKII) at a serine 616 (S616) site. Mutating this

phosphorylation site or inhibiting Drp1 activity blocks CaMKII- or ISO-induced mPTP opening

and myocyte death in vitro and rescues heart hypertrophy in vivo. In human failing hearts, Drp1

phosphorylation at S616 is increased. These results uncover a pathway downstream of

chronic b-AR stimulation that links CaMKII, Drp1 and mPTP to bridge cytosolic stress signal

with mitochondrial dysfunction in the heart.
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A
ctivation of b-adrenergic receptors (b-AR) plays an
essential role in stimulating cardiac output during
fight-or-flight response1 and a deleterious role in heart

failure2. Acute stimulation of b-AR augments cardiac contraction
by increasing intracellular Ca2þ handling3, whereas chronic
b-AR stimulation exhibits detrimental outcomes, such as
myocardial hypertrophy and heart failure, mainly through
activating Ca2þ /calmodulin-dependent kinase II (CaMKII)4,5.
Openings of mitochondrial permeability transition pore
(mPTP) were involved in cardiotoxicity induced by chronic
b-AR stimulation and preventing mPTP openings could
attenuate mitochondrial stress and mitochondrial-dependent
apoptosis6. Consistently, mitochondrial-targeted CaMKII
inhibition efficiently prevented isoproterenol (ISO)-induced
myocardial injury7. It is currently not known whether CaMKII
plays a causal role in mPTP openings during chronic b-AR
stimulation. Uncovering the molecular mechanism or signalling
pathway that mediates chronic b-AR stimulation-induced
mPTP openings bears tremendous clinical significance, due to
the fact that high catecholamine levels and chronic b-AR
activation are hallmarks of human heart failure.

As a crucial gatekeeper, transient or subconductance openings
of mPTP occur under physiological conditions and critically
maintain mitochondrial homeostasis8,9. On the other hand,
massive or prolonged mPTP openings, which can be
triggered by Ca2þ overload, oxidative stress and mitochondrial
fission/fusion, uncouple oxidative phosphorylation, induce
mitochondrial swelling, promote cytochrome c release, and
contribute to the pathology of heart disease such as ischaemia
reperfusion injury10,11. Tracking mPTP activity in intact cells
or in vivo poses a major technical challenge. Recently, we and
others have developed the optical recording of short-term and
reversible mPTP events by imaging single mitochondrial
flashes12. Despite debates over the nature of flashes13,
consensus has been reached that these events are triggered
by mPTP and fuelled by mitochondrial electron transport chain
in the heart12,14–16. This breakthrough discovery provides a tool
for evaluating mPTP in the healthy and diseased heart.

By utilizing this state-of-the-art technology, we found that
chronic b-AR stimulation induces mPTP through activating
CaMKII and subsequent phosphorylation of dynamin-related
protein 1 (Drp1) at S616. Inhibiting CaMKII activity, Drp1
phosphorylation or Drp1 activity suppressed mPTP openings,
ameliorated mitochondrial dysfunction and myocyte death
in vitro, and rescued heart dysfunction in vivo. Taken together,
we identify a new mechanism by which chronic b-AR stimulation
induces mitochondrial dysfunction through post-translational
modification of a fission protein in the heart.

Results
Chronic b-AR stimulation augmented mPTP opening. To
evaluate the effect of chronic b-AR stimulation on mPTP, we
incubated adult cardiomyocytes with physiological levels of
ISO (100 nM) for up to 18 h. ISO treatment augmented flash
frequency starting at 12 h (1.5 fold over control) and persisting to
18 h (Fig. 1a,b). Unitary features of flash including
amplitude, rising time and decay kinetics were not significantly
changed (Supplementary Fig. 1a–c). The ISO-induced flashes
were also coincided with loss of mitochondrial membrane
potential (Dcm, Fig. 1a) consistent with previous reports12.
ISO also dose-dependently increased flash frequency (Fig. 1c).
ISO-induced increase in mitochondrial flash frequency was
largely blocked by pre-incubation of mPTP inhibitor,
cyclosporine A (CsA, 1 mM), knocking down mitochondrial
Ca2þ uniporter (MCU), or a mitochondria-targeted superoxide

scavenger, mitoTEMPO (1 mM) suggesting the mPTP dependence
of flash (Fig. 1d–f and Supplementary Fig. 1d). Taken together,
chronic b-AR stimulation persistently induced mitochondrial
flash-coupled mPTP in a frequency-dependent mode.

Chronic b-AR stimulation-induced myocyte dysfunction.
Chronic ISO treatment increased the sensitivity of mitochondria
to oxidative stress as shown by a shorter time to laser-induced
Dcm loss and decreased resting Dcm suggesting mitochondrial
damage (Supplementary Fig. 2a–d). Meanwhile, ISO also induced
myocyte dysfunction as evidenced by increased oxidative stress at
24 h, decreased Ca2þ transient amplitude, compromised cardiac
contraction, and increased both necrosis and apoptosis at 48 h
(Supplementary Fig. 2e–i). Thus, chronic b-AR stimulation
elicited sequential events in mitochondrial and myocyte
dysfunction in adult cardiomyocytes (Supplementary Fig. 2j).
Despite the significant impact on mitochondrial and myocyte
function, mitochondrial biogenesis and autophagy were not
significantly altered by ISO stimulation in vitro (100 nM, 12–48 h)
or in vivo (15 mg kg� 1, 2 weeks) (Supplementary Fig. 3).

To test whether mPTP underlies ISO-induced mitochondrial
and myocyte dysfunction, we blocked mPTP opening by CsA, at
12 h after ISO treatment when increased flash-coupled mPTP was
detected, and found that CsA prevented laser-induced Dcm loss
suggesting it decreased mPTP sensitivity, maintained Dcm, and
decreased cellular oxidative stress at 24–48 h (Fig. 2a–d).
Moreover, CsA added at 12 h after ISO stimulation also enhanced
Ca2þ transient amplitude and contractility and rescued myocyte
death at 48 h (Fig. 2e–g). To obtain molecular evidence on the
mPTP dependence of ISO-induced mitochondrial and myocyte
dysfunction, we treated adult cardiomyocytes from cyclophilin D
knockout (CypD KO) mice with ISO. CypD KO myocytes were
resistant to chronic ISO-induced cell death (Fig. 2h) consistent
with previous report17. Taken together, increased mPTP openings
are responsible for mitochondrial and cardiac dysfunction in
chronic b-AR stimulation.

Chronic b-AR stimulation triggered mPTP through CaMKII.
Next, we explored the signalling pathways mediating chronic
b-AR stimulation-induced mPTP openings. First, b1-AR blocker
(CGP 20712A, 0.5 mM), but not b2-AR blocker (ICI 118,551,
0.5 mM), attenuated ISO-induced flash activity (Fig. 3a), sug-
gesting chronic ISO stimulation mainly targets b1-AR (refs 2,5).
Second, previous work suggests that protein kinase A (PKA)
pathway underlies the acute responses of b1-AR activation, while
CaMKII pathway is activated 3–6 h later and persistently for up to
24 h (ref. 18). Indeed, neither PKA inhibitor peptide (PKI, 10 mM)
nor an inactive cAMP analogue (Rp-PIP-cAMP, 100mM), had
any effect on chronic ISO-induced flash activity (Fig. 3b). In
contrast, pretreatment with CaMKII specific inhibitory peptide
(autocamtide 2-related inhibitory peptide (AIP), 10mM),
abolished ISO-induced flash activity. Similar effects were
observed with another specific CaMKII inhibitor, KN93 (0.5mM),
but not its inactive analogue, KN92 (2 mM, Fig. 3c). In parallel, we
detected increased phospholamban phosphorylation at threonine
17 site (PLN (ref. 17)), a CaMKII specific site, during chronic ISO
treatment, which was prevented by KN93 (Supplementary
Fig. 4a,b). Therefore, ISO persistently activates mPTP through
CaMKII but not PKA pathway.

To further explore the molecular mechanism on how CaMKII
induces mPTP, we overexpressed the dominant-negative
CaMKII (CaMKII DN)19, which prevented ISO-induced flash
activity (Fig. 3d). The effectiveness of CaMKII DN in blocking
endogenous CaMKII activity is confirmed by decreased PLN
(ref. 17) phosphorylation (Supplementary Fig. 4c). Taken
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together, ISO-induced mPTP is through CaMKII pathway. In
addition, CaMKII DN overexpression prevented ISO-induced
mitochondrial dysfunction, as indicated by a longer time of
laser-induced Dcm loss, and rescued myocyte death (Fig. 3e,f).
These results suggest that CaMKII mediates ISO-induced mPTP
and cardiotoxicity.

Next, we manipulated CaMKII activity through a gain of
function approach. Overexpression of wild-type CaMKII
(CaMKII WT) or a constitutively active CaMKII (CaMKII CA)
increased flash activity (Fig. 4a,b) and PLN (ref. 17)
phosphorylation (Supplementary Fig. 4c). CaMKII specific
inhibitor (KN93, 0.5 mM) or mPTP inhibitor (CsA, 1 mM) blocked
the effect of CaMKII WT (Fig. 4c,d). Overexpression of CaMKII
also potentiated the effect of ISO on laser-induced Dcm loss and
cardiomyocyte death as indicated by the earlier onset of these
events (Fig. 4e,f). Thus increased CaMKII activity is sufficient to
induce mPTP and myocyte dysfunction.

Finally, infusing mt-cpYFP transgenic mice with ISO
(15 mg kg� 1 for 14 days), a well-established model for heart
hypertrophy, resulted in significantly increased flash frequency
detected in the perfused intact heart (Fig. 5a). Importantly,
administration of KN93 (10mM kg� 1) together with ISO
prevented this increase (Fig. 5b). Moreover, propranolol or

KN93 reversed the increased heart/body weight ratio and
hypertrophic markers (ANP and BNP) (Fig. 5c–e). Thus, the
ISO–CaMKII–mPTP pathway exists in in vivo conditions.

Since CaMKII can be activated by oxidation20,21, we tested
whether oxidative stress underlies ISO-induced CaMKII
activation. Through monitoring mitochondrial reactive oxygen
species (ROS) production by MitoSOX red or a mito-
chondria-targeted genetic H2O2 indicator, mtHyper22,23, we
found no increase in mitochondrial ROS 12–24 h after ISO
treatment (Supplementary Fig. 5). CaMKII is activated and
flash-coupled mPTP openings are increased at 6–12 h after ISO
treatment. Thus, it seems that oxidative stress cannot be account
for the initial activation of this pathway. We do detected
increased cytosolic ROS 24 h after ISO treatment (Fig. 2d),
which is consistent with previous reports6,24. Therefore, it is likely
that oxidative stress is downstream of mPTP and may act in a
positive feedback manner to support sustained CaMKII activation
and mPTP openings at the later stage21.

CaMKII induced mPTP via Drp1 S616 phosphorylation.
CaMKII is a cytosolic kinase and we hypothesized that CaMKII
may phosphorylate a cytosolic protein, which travels to
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Figure 1 | Chronic ISO stimulation persistently elevated mPTP openings. (a) Representative images and traces of the onset of mitochondrial flashes (white

boxes) colocalized with Dcm indicator TMRM in adult rat cardiomyocytes treated with or without ISO (100 nM for 12 h). Scale bars, 10mm. (b) Time-course

assay showing the effects of ISO treatment on mitochondrial flash frequency in adult cardiomyocytes. In Vehicle groups, N¼ 27, 40, 31, and 58 cells from 3 to

6 rats in the time points of 10 min, 6, 12 and 18 h. In ISO groups, N¼43, 26, 50 and 23 in the time points of 10 min, 6, 12 and 18 h. *Po0.05 versus Vehicle at

the same time point. (c) ISO treatment increased flash frequency in a dose-dependent manner. N¼ 31, 37, 18 and 12 cells from 3 to 6 rats in the groups of

Vehicle, 100 nM, 1mM and 10mM ISO. *Po0.05 versus Vehicle group. (d) Cyclophilin D inhibitor, CsA, (1mM, 30 min) abolished the increase of flash

frequency induced by ISO (100 nM, 12 h). N¼ 26, 13, 19 and 22 cells from 3 to 6 rats in the groups of Vehicle, CsA, ISO and CsAþ ISO, respectively. *Po0.05

versus Vehicle group, #Po0.05 versus ISO group. (e) Knocking down mitochondrial Ca2þ uniporter (MCU) by short hairpin RNA (shMCU) blocked

ISO-induced flashes. N¼ 39, 14, 30 and 17 cells from 3 to 7 rats in the groups of Vehicle, shMCU, ISO and shMCUþ ISO, respectively. *Po0.05 versus

Vehicle group, #Po0.05 versus ISO group. (f) Pretreatment with mitochondrial antioxidant, mitoTEMPO (1mM, 1 h) attenuated ISO-induced flashes. N¼ 37,

11, 37 and 11 cells from 3 to 6 rats in the groups of Vehicle, mitoTEMPO, ISO and mitoTEMPOþ ISO, respectively.*Po0.05 versus Vehicle group, #Po0.05

versus ISO group. Data in b–f are mean±s.e.m. The data were analysed using Student’s t-test in b and One-way ANOVA followed by Turkey post-test in c–f.
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mitochondria and modulates mPTP. Drp1 is a cytosolic protein
that translocates to mitochondria upon activation by Ca2þ or
phosphorylation25,26. A number of kinases can phosphorylate
Drp1 at different sites25–28, such as by a CaMK family member,
CaMKI at S637, in the brain29. Since in vivo phospho-proteomics
analysis reveals proteins with serine/threonine were the cardiac
targets of b-AR signalling30, we hypothesized that CaMKII may
induce Drp1 phosphorylation and through which facilitates
mPTP opening11. Indeed, by using site-specific phosphorylation
antibodies, we found that 2 weeks of ISO infusion significantly
increased Drp1 phosphorylation at S616 site (Drp1S616, 1.8 fold
increase over control) in the mouse heart (Fig. 6a). Further, KN93
(10 mM kg� 1) or b1-AR antagonist (propranolol, 10 mg kg� 1),
efficiently prevented Drp1S616 phosphorylation (Fig. 6a). In

contrast, Drp1 phosphorylation at S637 site (Drp1S637) was
only detected in vitro in ISO-treated (12 h) adult myocytes in a
cAMP/PKA-dependent but CaMKII-independent manner as
previously reported25, but not in vivo in the mouse heart after
2 weeks of ISO infusion (Supplementary Fig. 6a,b). In addition,
CaMKII DN did not affect the phosphorylation status of Drp1 at
S637 at baseline or after ISO treatment (Supplementary Fig. 6c),
Overexpression WT Drp1 or S616A mutation equally
increased S637 phosphorylation due to increased total Drp1
levels, suggesting the phosphorylation status at S616 has no
effect on S637 phosphorylation (Supplementary Fig. 6d). In
cultured adult cardiomyocytes, ISO treatment led to Drp1S616

phosphorylation as early as 6 h and can be abolished by KN93
(Fig. 6b,c). Further, overexpression of CaMKII WT promoted
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Figure 2 | Blocking ISO-induced mPTP openings prevented mitochondrial and myocyte dysfunction during chronic b-AR stimulation.

(a) Representative linescan confocal images showing the laser-induced permanent loss of Dcm in individual mitochondrion. CsA (1mM) was added 12 h

after ISO treatment, when the ISO-induced flash frequency reaches peak. (b) Quantification of the time from the start of scan to the sudden loss of Dcm.

The shorter the time, the more sensitive the mitochondria to the laser. N¼ 312, 383 and 274 mitochondria from 23 to 30 cells and three rats in the groups

of Vehicle, ISO and ISOþCsA, respectively. (c) The intensity of TMRM fluorescence at the beginning of each scan was used to evaluate the basal Dcm in

individual mitochondrion. (d) CsA reversed ISO-induced cellular oxidative stress reflected by the increased rate of DCF-DA fluorescence over 30 s (1 frame

per second) (dF/dt). N¼46, 53 and 22 cells from four rats in the groups of Vehicle, ISO and ISOþCsA, respectively. (e,f) CsA attenuated the reduction of

Ca2þ transients (e) and cell contraction amplitude (f) after 48 h ISO treatment. N¼ 21, 22 and 24 cells from three rats in the groups of Vehicle, ISO and

ISOþCsA, respectively. (g) CsA rescued myocyte death after 48 h of ISO (1mM) treatment measured by Trypan blue assay. N¼ 903, 643 and 604 cells

from four rats in the groups of Vehicle, ISO and ISOþCsA, respectively. (h) Knockout of CypD ameliorated cell death in cultured adult mouse

cardiomycytes treated with ISO (100 nM, 48 h). N¼ 637, 651, 565 and 693 cells from three mice in the groups of Vehicle, CypD KO, ISO and CypD

KOþ ISO, respectively. Data in b–h are mean±s.e.m. *Po0.05 versus Control group, #Po0.05 versus ISO group. The data were analysed using One-way

ANOVA followed by Turkey post test in b–h.
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Drp1S616 phosphorylation (Fig. 6d). These results strongly
suggest that CaMKII is upstream of Drp1S616 phosphorylation
during chronic b1-AR stimulation.

Next, whether Drp1S616 phosphorylation promotes its
translocation to mitochondria was determined by measuring
Drp1 protein levels in mitochondrial and cytosolic fractions of
the myocyte after 2 weeks of ISO infusion. Indeed, Drp1 was
significantly enriched in mitochondrial fraction (1.84 fold)
while decreased in cytosolic fraction (Fig. 6e). KN93 prevented
these changes (Fig. 6e). In adult cardiomyocytes treated with
ISO, increased ‘punctate’ Drp1 pattern that colocalized with
mitochondrial marker was found by immunofluorescent staining
(Fig. 6f). Moreover, we found phosphorylated Drp1 (at S616 site)
was enriched in the mitochondrial fraction of the heart
preparations after 2 weeks of ISO infusion (Fig. 6g).
These results provide strong support that Drp1 phosphorylation
at S616 site promotes its mitochondrial translocation.

Finally, we tested whether the increased mitochondrial
translocation of Drp1 affects mitochondrial morphology. In
H9C2 cardiac myoblast cells, chronic ISO treatment (1 mM for
24 h) shifted the balance of fission/fusion towards fission as
indicated by decreased aspect ratio (AR) and form factor (FF)
(Fig. 6h). We have used these two parameters to quantify
mitochondrial fission/fusion in other cells31. As positive
control, we found that the dominant-negative Drp1 mutation,
Drp1 K38A, increased AR and FF (Fig. 6h and Supplementary
Fig. 7). Overexpression of CaMKII WT mildly increased,

whereas overexpression of CaMKII CA significantly facilitated
mitochondrial fission. CaMKII WT also enhanced ISO-induced
mitochondrial fission (Fig. 6i and Supplementary Fig. 7).
Calcineurin has been shown to dephosphorylate Drp1 at S637
site and promote its mitochondrial translocation26. Therefore, we
tested whether CsA, also a calcineurin inhibitor, can affect Drp1
phosphorylation at S616 or S637 site and the mitochondrial
translocation of Drp1 during ISO treatment. CsA had no effect on
ISO-induced S616 and S637 phosphorylation in H9C2
cardiac myoblast cells, Drp1 translocation to mitochondria
and mitochondrial fission (Supplementary Figs 7 and 8).
Taken together, CaMKII promotes fission through Drp1
phosphorylation at S616 and its mitochondrial translocation.

CaMKII bound Drp1 and directly phosphorylated it at S616.
CaMKII has many intracellular targets, including kinases and
Drp1 S616 phosphorylation can be modulated by other
kinases/phosphatases as well. Therefore, it is critical to determine
whether CaMKII can directly bind and phosphorylate Drp1 at
this site. Co-immunoprecipitation analysis showed that
endogenous Drp1 and CaMKII in adult rat cardiomyocytes
bound with each other (Fig. 7a). Moreover, we purified CaMKII
from H9C2 cells and murine WT Drp1 or the S579A mutation
(equivalent to human Drp1 S616A) from Escherichia coli
(Supplementary Fig. 9) and incubated them together in the
presence of calmodulin and Ca2þ . The results showed that
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Figure 3 | ISO induced mPTP openings through b1-AR and CaMKII pathway. (a) Pretreatment with b1-AR specific antagonist (CGP, 0.5 mM), but not
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100mM) failed to prevent the increase of flash after ISO treatment. N¼ 25, 34, 20 and 19 cells from three rats in the groups of Vehicle, ISO, PKIþ ISO and
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DN, ISO and CaMKII DNþ ISO, respectively. (f) CaMKII DN overexpression prevented ISO-induced cell death (1mM, 48 h). N¼474, 577 and 374 cells

from four rats in the group of Vehicle, ISO and CaMKII DNþ ISO, respectively. Data in a–f are mean±s.e.m. *Po0.05 versus Control group, #Po0.05

versus ISO group. The data were analysed using One-way ANOVA followed by Turkey post test in a–f.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms13189 ARTICLE

NATURE COMMUNICATIONS | 7:13189 | DOI: 10.1038/ncomms13189 | www.nature.com/naturecommunications 5

http://www.nature.com/naturecommunications


anti-P-S616 antibody detected phosphorylation in WT Drp1, but
not the mutated Drp1, when incubated with CaMKII (Fig. 7b).
Interestingly, in this in vitro phosphorylation reaction system,
we found CaMKII and Drp1 S616A can form a more stable
enzyme–substrate intermediate compared with CaMKII and WT
Drp1 (Fig. 7c). Since, after being phosphorylated, the protein
tends to dissociate with its kinase to facilitate subsequent binding
and phosphorylation of a new protein, these results support that
CaMKII directly binds and phosphorylates Drp1 at S616 site.

Blocking Drp1 ameliorated myocyte and heart dysfunction.
Whether Drp1S616 phosphorylation contributes to CaMKII-
induced mPTP is determined. We found that overexpression of
non-phosphorylatable Drp1 mutation (Drp1 S616A) prevented
ISO-induced flash activity (Fig. 8a). Moreover, cardiomyocytes
overexpressing Drp1 S616A were resistant to laser-induced Dcm

loss and showed less cell death after 48 h ISO treatment
(Fig. 8b,c). Additionally, overexpressing Drp1 K38A prevented
ISO-induced mPTP and cell death (Fig. 8d–f), CaMKII-induced
mitochondrial flashes, and ISO’s effect on laser-induced Dcm loss
(Supplementary Fig. 10).

To gain therapeutic insights over the role of Drp1 in
ISO-induced heart dysfunction, we blocked Drp1 activity
in vivo by Mdivi-1 (50 mg kg� 1), a compound inhibiting Drp1
activity, and found that ISO infusion-induced flash activity was
decreased and cardiac hypertrophy attenuated (Fig. 8g,h). These
results demonstrate that increased Drp1 activity likely due to
Drp1S616 phosphorylation contributes to heart hypertrophy.

Increased Drp1S616 phosphorylation in human failing hearts.
Chronically elevated b1-AR activity is a hallmark of heart
failure in human. To further test the clinical relevance of the
CaMKII–Drp1–mPTP pathway, we determined Drp1S616

phosphorylation in human failing hearts. Ventricular samples
from dilated cardiomyopathy or ischaemic heart failure patients32

showed significantly increased Drp1S616 phosphorylation with no
change in total Drp1 levels (Fig. 8i). These data strongly support
that increased Drp1S616 phosphorylation is associated with
human heart failure.

Discussion
In this report, we demonstrate a novel signalling pathway that
mediates chronic b-AR stimulation-induced mitochondrial
dysfunction (Fig. 9). Specifically, CaMKII directly phosphorylates
a fission protein, Drp1 at a novel site and this post-translational
modification enhances Drp1 translocation to mitochondria,
mPTP openings and eventually myocyte death. Massive or
irreversible mPTP openings are final executors of mitochondrial
pathway of cell death and have been linked to chronic b-AR
stimulation6,33. The mPTP is also known to open transiently or in
subconductance state under physiological conditions8,9,
which may bear essential signalling roles34,35. It is largely
unknown whether these two modes of mPTP openings are
connected and how the pathological mPTP is induced in
the stressed heart. Results from this study show that the
physiological mPTP openings, if activated persistently, are
detrimental. Further, the CaMKII–Drp1–mPTP pathway could
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Figure 4 | Activating CaMKII pathway stimulated mPTP opening and mitochondrial stress in adult cardiomyocytes. (a) Representative images of

Western blot using the anti-HA antibody confirmed the expression of HA-tagged wild-type CaMKII (CaMKII WT) and a constitutively active CaMKII

(CaMKII CA). (b) Overexpression of CaMKII WT or CaMKII CA significantly increased flash frequency in adult cardiomyocytes. N¼ 26, 28 and 26 cells

from four rats in the groups of control, CaMKII WT and CaMKII CA, respectively. *Po0.05 versus control group. (c) Inhibition of CaMKII activity by

applying KN93 (0.5mM) attenuated the increased flash frequency by CaMKII WT overexpression. N¼ 7, 9 and 9 cells from three rats in the groups of

Control, CaMKII WT and WTþKN93, respectively. *Po0.05 versus control group, #Po0.05 versus CaMKII WT group. (d) CsA (1mM) inhibited the

increased mPTP openings by CaMKII WT overexpression. N¼ 14, 27 and 22 cells from three rats in the groups of control, CaMKII WT and WTþKN93,

respectively. *Po0.05 versus Control group, #Po0.05 versus CaMKII WT group. (e) CaMKII WT overexpression promoted laser-induced permanent loss

of Dcm in adult cardiomyocytes and showed additive effect with ISO treatment (100 nM, 12 h). N¼ 536, 366, 305 and 242 mitochondria from 21 to 48 cells

and four rats in the groups of control, ISO, CaMKII WT and WTþ ISO, respectively. *Po0.05 versus Vehicle group, #Po0.05 versus CaMKII WT group.

(f) CaMKII WT overexpression exaggerated cell death after ISO treatment (100 nM, 24 h). N¼665, 577, 1,216 and 567 cell from five rats in the groups of

Vehicle, CaMKII WT, ISO and WTþ ISO, respectively. *Po0.05 versus ISO 24 h group. Data in b–f are mean±s.e.m. The data were analysed using

One-way ANOVA followed by Turkey post test in b–f.
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be a key modulator of stress-induced heart pathology and a
potential target for heart failure therapy.

mPTP is a non-specific and large pore that can be triggered by
pathological perturbations9–11,33. In the heart, massive and
irreversible mPTP openings are the culprit of ischaemia
reperfusion injury9. However, transient or subconductance
mPTP openings are detected under resting conditions36,37, and
may have important physiological functions38. Several pieces of
evidence shown here suggest that the physiologically relevant
mPTP openings (for example, mitochondrial flash-coupled) could
be detrimental under stress conditions. mPTP openings was
persistently increased after 12–18 h of ISO treatment and preceded
oxidative stress, loss of Dcm and myocyte death. Blocking the
persistent mPTP openings at the early phase (12 h) attenuated
mitochondrial damage and myocyte death at the later stage.
Increased mPTP was downstream of CaMKII pathway, which has
been linked to cell death during chronic b-AR stimulation4,5,7,19.
Finally, increased mPTP was observed in the heart after chronic
ISO infusion. Thus, mPTP openings, if persistently activated, could
induce mitochondrial and myocyte dysfunction.

How to differentiate the physiological and pathological mPTP
openings is an important question. The mitochondrial flash is such
an optical readout that may be used to answer this question. We
have shown that flash-coupled mPTP in the normal heart is at a
low frequency and is moderately induced by physiological
stimulations such as Ca2þ transients during excitation–
contraction coupling22. On the other hand, dramatic increases in
flash-coupled mPTP openings such as by ischaemia reperfusion,
excessive oxidants, or persistently high Ca2þ , are detrimental12,17.
Therefore, the magnitude and duration of mPTP openings could
determine the eventual outcome. This study supports this idea by
showing that chronic b-AR stimulation persistently increased the
frequency of mPTP openings, and over time, caused myocyte
death. It is conceivable that b-AR stimulation-induced mPTP

openings may be a compensatory response to either stimulate
mitochondrial respiration or limit matrix Ca2þ overload in the
short term. However, in the long run, persistently increased mPTP
openings could compromise bioenergetics, induce oxidative stress
and disturb Ca2þ homeostasis. In agreement with this speculation,
increased mPTP openings have been linked to oxidative insult-
induced apoptosis and neural excitotoxicity17,39.

This study also provides evidence to show the causal role of
CaMKII in chronic b-AR-induced mPTP openings and cell death.
Chronic b-AR stimulation causes mitochondrial swelling, irrever-
sible mPTP openings and mitochondrial-dependent apoptosis6,33.
Whether these effects are mediated by CaMKII is not known. Here,
we show that CaMKII activation is both sufficient and necessary to
stimulate mPTP. First, ISO-induced mPTP openings was blocked
by CaMKII inhibitors and a dominant-negative CaMKII mutation.
Moreover, suppressing or enhancing CaMKII activity prevented or
facilitated mPTP openings, mitochondrial damage and myocyte
death. CaMKII also modulates cytosolic and sarcoplasmic
reticulum (SR) Ca2þ handling and gene expression through
phosphorylating various targets40,41. Specifically, the cytosolic
Ca2þ derangement, such as increased SR leak and resting Ca2þ

levels, may synergistically stimulate mPTP opening and contribute
to cell death. This speculation is consistent with recent reports
underscoring the role of CaMKII in mitotoxicity, heart dysfunction
and hypertrophy7,42. A recent report showed that CaMKII
knockout mouse has lower myocyte death but still develops
heart hypertrophy after chronic ISO infusion43. We speculate that,
unlike the pharmacological and acute inhibition of CaMKII in this
study, total ablation of CaMKII in the heart may activate
compensatory mechanisms that mediate the hypertrophy
phenotype.

To address how CaMKII signalling pathway modulates
mPTP, we show that mitochondrial fission protein Drp1 is a
novel mediator. Drp1 is a cytosolic protein that can be
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activated/inactivated by phosphorylation at various sites25–28.
It is not known whether CaMKII can phosphorylate Drp1.
We detected increased Drp1 phosphorylation at S616 site during
chronic ISO treatment or by CaMKII overexpression.
Furthermore, CaMKII directly interacted with Drp1 and
promoted its mitochondrial translocation and mito-
chondrial fission. These results are consistent with previous
report showing Drp1S616 phosphorylation enhances Drp1
translocation and function44. Previous studies have also shown

that acute ISO treatment induces Drp1S637 phosphorylation in a
PKA-dependent manner25. It is possible that the phosphorylation
of Drp1 at PKA site (S637) versus CaMKII site (S616) serves as a
switch or checkpoint to determine distinct outcomes during acute
versus chronic b-AR stimulation.

Finally, we show that Drp1S616 phosphorylation or Drp1
activity is required for b-AR stimulation- or CaMKII-induced
mPTP openings, since mutating this phosphorylation site
(S616A) or the GTP-binding site (K38A) of Drp1 efficiently
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blocked increased mPTP openings, mitochondrial damage and
cardiomyocyte death. However, how Drp1 S616 phosphorylation
or Drp1 activity stimulates mPTP is not fully understood.
Previous reports indicates that mitochondrial fission is essential
for mPTP openings in response to stresses such as hyperglycae-
mia, and inhibiting mitochondrial fission protects against
ischaemia reperfusion injury probably through suppressing
mPTP (refs 11,31). Another possibility is that Drp1 may
promote mitochondrial fission, which could cause membrane
fractures or form lipidic pores45. Finally, the mitochondrial outer
membrane proteins, such as the Bcl-2 family proteins, may
interact with Drp1 and modulate mPTP (for example, through
outer membrane permeability)46–48.

In summary, two novel findings were reported in this study.
First, chronic b-AR stimulation persistently increased mPTP
openings through CaMKII pathway. Second, CaMKII directly
interacted and phosphorylated Drp1 at S616 site and through
which increased mPTP openings. Therefore, activation of the
cytosolic kinase CaMKII modulates mitochondrial function
through phosphorylation of a fission protein. This pathway could
contribute to mitochondrial dysfunction and myocyte death
during chronic b-AR stimulation, a clinically important condition
often seen in heart failure patients.

Methods
Reagents. ISO, CsA, CGP 20712A (CGP), ICI-118,551 (ICI), PKA inhibitor
fragment 14–22 (PKI), RP-8-PIP-CAMPS (8-RP-cAMPs), AIP, (±)-propranolol
hydrochloride (Prop), Mdivi-1, atractyloside and mitoTEMPO were purchased
from Sigma-Aldrich (St Louis, MO, USA). KN93 and KN92 were purchased from
Merck Millipore Corporation (La Jolla, CA, USA). The fluorescent dyes,
tetramethylrhodamine methyl ester perchlorate (TMRM), Fluo-4 AM, DCFH-DA,
MitoSOX red MitoTracker Red CMXRos and MitoTracker Green FM were
purchased from Life Technologies (Eugene, OR, USA).

Recombinant adenovirus vectors construction. Construction of recombinant
adenovirus vectors containing: mitochondrial-targeted circularly permuted yellow
fluorescent protein (Ad-mt-cpYFP)12, HA-tagged CaMKIIdC DN, CAMKIIdC WT
and CaMKIIdC CA were generated previously19. Recombinant adenovirus expressing
MCU short hairpin RNA and Drp1 S616A were generated by Vector BioLabs
(Malvern, PA, USA) with the original construct obtained from Addgene (Cambridge,
MA, USA). Adenovirus containing Drp1 K38A or mtHyper were generated
previously31,49. Concentration of the viruses was determined to be at B1� 1011 viral
particles per ml. All the viruses were aliquoted and stored at � 80 �C.

Adult cardiomyocyte culture and gene transfer. All the animal procedures were
approved by the Institutional Animal Care and Use Committee at the University of
Washington. Cardiomyocytes were isolated from the heart of female Sprague
Dawley rats (200–250 g, Harlan) using standard enzymatic technique22. Briefly, rat
was anaesthetized by intraperitoneal (i.p.) injection of pentobarbital. The heart was
quickly removed, cannulated via the ascending aorta, and mounted on a modified
Langendorff perfusion system. The heart was perfused with oxygenated
Krebs–Henseleit Buffer (KHB) solution supplemented with collagenase II

(Worthington, USA) and hyaluronidase (Sigma, USA) at 37 �C. Rod shaped adult
cardiac myocytes were collected and plated at a density of B2� 104 cells per
coverslip precoated with 20 mg ml� 1 laminin (Life Technologies, USA). The cells
were cultured in serum-free M199 medium (Sigma) supplemented with 10 mM
glutathione, 26.2 mM sodium bicarbonate, 0.02% bovine serum albumin and
50 U ml� 1 penicillin–streptomycin. Adenovirus-mediated gene transfer was
implemented 2 h after cell plating and at a multiplicity of infection of 50–100. The
chemicals ISO, CsA and KN93 were added into culture medium at 24–36 h and the
experiments were done 2–4 days after gene transfer. For sustained b-AR
stimulation, cardiomyocytes were treated with various concentrations of ISO
(100 nM, 1 mM and 10mM) for various periods (6, 12, 24 and 48 h) with fresh ISO
provided every 24 h. Chemicals including CGP, ICI, PKI, 8-RP-cAMPs, AIP,
KN-93, KN-92 and atractyloside were added 0.5 h before ISO treatment.
mitoTEMPO was added 1 h before ISO treatment.

Animal experiments. Pan-tissue mt-cpYFP transgenic mice were generated using
C57BL/6 mice (Charles River) and with the pUC-CAGGS-mt-cpYFP vector as
previously reported22,50,51. The mice were housed under standard conditions with a
12-h light–dark cycle and a constant temperature (22±2 �C). Food and water were
provided ad libitum. To establish the cardiac hypertrophy model, transgenic mice of
both genders at the age of 8–10 weeks (littermates) were randomly assigned to
surgery or sham operation groups. ISO (15 mg kg� 1 d� 1) with or without KN93
(10mM kg� 1 d� 1), Prop (10 mg kg� 1 d� 1) and Mdivi-1 (50 mg kg� 1 d� 1)
were delivered by mini-osmotic pumps (2002, Alzet Corporation) implanted
subcutaneously under anaesthesia with avertin (2.5% wt/vol, 15ml g� 1 body weight,
i.p.), respectively. After 2 weeks, mice were euthanized and hearts were excised for
perfused heart confocal imaging or weighed, and frozen in liquid nitrogen for
Western blot and real-time PCR assay. In addition, male CypD KO mice and its WT
controls (B6;129-Ppiftm1 J mol J� 1, 3 months old) were purchased from the Jackson
Laboratory. The adult cardiomyocytes isolating from these mice were cultured and
treated with 100 nM ISO to determine the role of CypD in ISO-induced cell death.

Confocal imaging of mitochondrial flashes. Single mitochondrial flash was
detected by using a Zeiss LSM 510 Meta confocal microscope equipped with a
40� 1.3 NA oil immersion objective12. For detecting mitochondrial flashes in adult
cardiomyocytes, cells infected with Ad-mt-cpYFP virus were incubated in modified
KHB buffer (138 mM NaCl, 3.7 mM KCl, 1.2 mM KH2PO4, 5 mM Glucose, 20 mM
HEPES and 1 mM CaCl2) at room temperature. The cells were cultured on 25 mm
coverslips and tightly attached to a custom designed perfusion chamber mounted
on confocal microscope stage. Dual excitation images of mt-cpYFP were taken by
alternating excitation at 405 and 488 nm and collecting emissions at 4505 nm.
Time-lapse x,y images were acquired at 1,024 resolution for 100 frames and at a
sampling rate of 1 s per frame. During the scan, the spatiotemporal occurrence of
flash is stochastic and no apparent laser or time-dependent induction of flashes was
observed. In a subset of experiments, mitochondrial membrane potential indicator,
TMRM (20 nM, Invitrogen) was loaded into cells and tri-wavelength imaging of
mt-cpYFP and TMRM were taken by sequential excitation at 405, 488 and 543 nm,
and emissions collected at 505–550, 505–550 and 4560 nm, respectively22.

For imaging single mitochondrial flash activity in intact hearts from mt-cpYFP
transgenic mice, the hearts were perfused with modified KHB buffer containing
0.5 mM pyruvate and 10 mM glucose at 37 �C and bubbled with 95% O2 and 5%
CO2. The fluorescence acquisition plane was focused about 30 mm into the
myocardium from the heart surface. Blebbistatin (10 mM) and gentle pressure were
applied when taking time lapse two-dimensional (2D) images of the myocardium.
In some experiments, TMRM (Dcm indicator, 100–500 nM) was included in the
perfusion solution50.

Figure 6 | Chronic ISO administration promoted Drp1 S616 phosphorylation and its mitochondrial translocation through CaMKII pathway.

(a) Increased Drp1 phosphorylation at S616 site (Drp1S616) in the heart after ISO infusion through CaMKII-dependent pathway. N¼ 5, 6, 4 and 4 mice in

the groups of Vehicle, ISO, Propþ ISO and KN93þ ISO, respectively. (b) ISO administration induced Drp1S616 phosphorylation in cultured adult rat

cardiomyocytes. N¼ 6. (c) CaMKII blocker, KN-93 (0.5mM), prevented Drp1S616 phosphorylation by ISO (100 nM for 12 h). N¼4. (d) CaMKII WT

overexpression induced Drp1S616 phosphorylation in adult cardiomycytes. N¼4. (e) Representative immunoblots and quantification of Drp1 proteins in

mitochondrial and cytosolic fractions of the heart after ISO infusion. COX IV and b-actin were used as mitochondrial and cytosolic markers, respectively.

N¼ 5, 6 and 4 mice in the groups of Vehicle, ISO and KN93þ ISO, respectively. (f) Immunofluorescent analysis showing increased ‘punctate’ Drp1 staining

colocalized with mitochondria. Images are representative of 30 cells from three rats in each group. (g) Representative immunoblots and quantification of

Drp1S616 or Drp1S637 phosphorylation in the mitochondrial or cytosolic fractions of the heart after 2-weeks of ISO infusion. N¼4. (h) ISO treatment (1 mM

or 10mM for 24 h) induced mitochondrial fragmentation in H9C2 cardiac myoblasts. A dominant negative Drp1 mutation (Drp1 K38A) was used as positive

control. Form factor (FF; the reciprocal of circularity value) and aspect ratio (AR; major axis/minor axis) were acquired by using ImageJ. Smaller values of

AR and FF indicate increased mitochondrial fragmentation. N¼ 17,714, 5,929 and 5,862 mitochondria in the groups of Vehicle, ISO 1 mM and ISO 10mM,

respectively. (i) Overexpression of CaMKII WT and CaMKII CA increased mitochondrial fragmentation in H9C2 cells. CaMKII WT potentiated the effects of

ISO on mitochondrial morphological change as indicated by significant fragmentation at a low ISO dose (100 nM). N¼ 17,714, 17,692, 9,567 and 17,035

mitochondria in the groups of Vehicle, CaMKII WT, WTþ ISO and CaMKII CA, respectively. Data are mean±s.e.m. *Po0.05 versus Vehicle, #Po0.05

versus ISO. The data were analysed using One-way ANOVA followed by Turkey post test.
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Laser-induced Dwm loss and determination of resting Dwm. Laser-induced
abrupt Dcm loss was used as an indication of the sensitivity of mitochondria to
oxidative stress-induced irreversible mPTP opening in intact myocytes as
previously described52. Briefly, the adult cardiomyocytes were incubated with
TMRM (20 nM) in KHB buffer at 37 �C for 20 min. Confocal linescan (x, t) was
set-up along the long axis of the myocytes and encompass 10–15 mitochondria that
showed clear pattern and TMRM loading. TMRM was excited at 543 nm and at a
slow speed (35 ms per line) to trigger oxidative stress and Dcm loss, which is shown
as a sudden loss of TMRM signal in that mitochondrion. The time from the start of
the scan to the complete loss of TMRM signal was calculated as the time of mPTP
openings. A shorter mPTP time indicates that the pore is more sensitive to
laser-induced openings. The intensity of the TMRM fluorescence at beginning of
the scan was used as the basal Dcm in individual mitochondrion.

Cellular oxidative stress measurement. The determination of intracellular
oxidant stress was based on the oxidation of DCFH-DA. Briefly, adult cardio-
myocytes were incubated with CM-H2DCFDA (Invitrogen) at 37 �C for 20 min.
Confocal imaging was taken by 488 nm excitation and emission was collected at
4505 nm. Time lapse 2D images were taken and the rate of DCF-DA fluorescence
change over 30 frames (1 s per frame) (dF/dt) was used as an indication of the
cellular oxidative stress. For determining mitochondrial ROS production, we used
MitoSOX red (10 mM, loading for 10 min at 37 �C) with 405 and 514 nm excitation
and emissions collected at 4530 nm. The mitochondrial-targeted H2O2 indicator,
mtHyper, was excited at 405 and 488 nm and emission collected at 4505 nm.

Ca2þ transient and myocyte contraction. Measurements of Ca2þ transients and
myocyte contraction were performed as previously reported18. After loading with
the Ca2þ indicator Fluo-4 AM (Invitrogen, 2 mM for 30 min) in KHB buffer, adult
cardiomyocytes were electrically stimulated locally (40 V, 1 Hz) by placing the
extracellular electrodes close to the cell of interest. Ca2þ transients and cell
shortening were measured with a confocal laser scanning microscope (LSM510,
Carl Zeiss). Digital image analysis used customer designed programs coded in
interactive data language18.

Cell death determination. The effects of chronic b-AR stimulation on cell death
was detected by trypan blue exclusion assay and CellEvent Caspase-3/7 Green
Detection Reagent (Invitrogen). In trypan blue exclusion, cardiomyocytes were
incubated with trypan blue (0.4% in PBS) for 3 min at room temperature. Images
were taken within 3–5 min of trypan blue washout by a light microscope. Unstained
cells (clear) were defined as viable and cells with blue colour were damaged. At least
50 cells were counted in each image and four images for each sample. To determine
apoptosis in live cells, adult cardiomyocytes were incubated with CellEvent

Caspase-3/7 Green Detection Reagent (Invitrogen) for 30 min at 37 �C
according to the manufacturer’s instruction. Fluorescence images were taken
by a confocal microscope with excitation/emission wavelength at 488 nm/525 nm
(Leica TCS SP8).

Western blot analysis. The heart tissues and adult cardiomyocytes were
lysed with cell lysis buffer in the presence of a cocktail of proteinase/phosphatase
inhibitors (Cell Signaling Technology, Inc., Danvers, MA, USA) and centrifuged at
12,000g for 30 min at 4 �C. Isolation of mitochondrial and cytosolic fractions from
whole heart was performed using the Mitochondria/cytosol Fractionation Kit
(Beyotime Institute of Biotechnology, Shanghai, China). The human man heart
samples were collected in a previous study32 and the study protocol was approved
by local ethics committee. The extracted proteins were separated by NuPAGE
Novex 4–12% Bis–Tris Gels (Life Technologies). After transferring the proteins on
to nitrocellulose membranes or polyvinylidene difluoride (PVDF) membranes, the
membranes were blocked and incubated with various primary antibodies at 4 �C
overnight. We used the following primary antibodies for the Western blots: anti-
MCU antibody (1:500, Sigma-Aldrich), anti-HA antibody (1:1,000, Covance
Research Products Inc.), anti-Phospho-Drp1 (S616) and anti-Phospho-Drp1
(S637) antibodies (1:500, Cell Signaling Technology), anti-Drp1 antibody (1:500,
BD Biosciences or Abcam), anti-Phospholamban Phospho Threonine-17 (1:5,000,
Badrilla Ltd. Leeds, United Kingdom), anti-PGC-1a (1:1,000, Sigma-Aldrich), anti-
Tfam (1:1,000, Cell Signaling Technology), anti-LC3 (1:1,000, Sigma-Aldrich), anti-
P62 (1:500, Cell Signaling Technology), anti-Atg5 (1:500, Cell Signaling
Technology), anti-COX IV (1:1,000, Abcam, Cambridge, MA, USA) and anti-b-
actin (1:500, Abcam, Cambridge, MA, USA). The appropriate anti-rabbit or anti-
mouse secondary antibodies were applied. The immunoblots signals were detected
and quantified using an Odyssey Infrared Imaging System (LI-COR, Lincoln, NE,
USA) or a ChemiDoc XRSþ System with Image Lab Software (Bio-Rad). All the
uncropped scannings are provided in Supplementary Fig. 11.

Real-time PCR analysis. Quantitative real-time PCR was applied to detect the
hypertrophy-related genes by using SYBR green (Bio-Rad). Total ribonucleic acid
was isolated from fresh heart tissue using the RNeasy Kit, and reverse transcripted
to complementary DNA by using Omniscript reverse synthase (Qiagen). The
primers for ANP and BNP are kindly gift from Dr Stephen C. Kolwicz (University
of Washington). The primers for ANP were 50-ATTGACAGGATTGGAGCC
CAGAGT-30 and 50-TGACACACCACAAGG GCTTAGGAT-30; for BNP were
50-GCCAGTCTCCAGAGCAATTCA-30 and 50-GGGCCATTTCCT CCGAC
TT-30 . The real-time PCR result for the messenger RNA levels of each gene was
repeated four times and was normalized to 18S ribosomal RNA levels.
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N¼4 for each group. *Po0.05 versus None-failing control group. Data are mean±s.e.m. In a–i, the data were analysed using One-way ANOVA followed

by Turkey post test.
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Immunofluorescence detection of Drp1 distribution. To analyse the trans-
location of Drp1 into mitochondria, after being incubated with MitoTracker Red
CMXRos probe (200 nM for 30 min at 37 �C ), adult cardiomyocytes or H9C2 cells
were fixed with 4% (w/v) paraformaldehyde in PBS at 4 �C for 20 min. The cells were
then permeabilized with 0.5% Triton X-100 in PBS for 15 min at room temperature.
The cells were washed twice with PBS before being blocked with normal goat serum
at 37 �C for 1 h. Subsequently, the cells were incubated with a mouse monoclonal
antibody against Drp1 (BD Biosciences) at a 1:100 dilution overnight at 4 �C, and
then with an Alexa Fluor 488 goat anti-mouse IgG (Invitrogen) at a 1:100 dilution
for 1 h at 37 �C. The cells were mounted in mounting medium and visualized under
a Leica TCS SP8 laser scanning confocal microscope.

Mitochondrial morphology analysis in H9C2 cell line. The effects of chronic
b-AR receptor stimulation on mitochondrial morphology were carried out in a rat
cardiac myoblast cell line (H9C2 cells; American Type Culture Collection, Manassas,
VA, USA). H9C2 cells were cultured in DMEM (Invitrogen) supplemented with 10%
FBS (Gibco, Grand Island, NY, USA), 1% v/v penicillin/streptomycin (Sigma) in a
5% CO2-humidified atmosphere at 37 �C. To analyse the mitochondrial morphology
changes, H9C2 cells were loaded with 200 nM MitoTracker Green for 30 min at
37 �C. Confocal 2D images were collected by excitation at 488 nm and collecting
emissions at 4505 nm. Quantitative analyses of mitochondrial morphology were
performed by ImageJ software (NIH)31. Individual mitochondria (particles) were
subjected to particle analyses to acquire values for the FF (the reciprocal of circularity
value) and AR (major axis/minor axis). High values for FF represent elongated
tubular mitochondria, and increased AR values indicate an increase of mitochondrial
complexity (length and branching).

Co-immunoprecipitation. Adult cardiomyocytes from rats were collected in PBS
with 0.1% Triton X-100. After three freeze–thaw cycles, the cell lysates were
centrifuged at 13,000 r.p.m. for 15 min. The supernatant were incubated with
Protein A/G agarose beads (Thermo Fisher) for 2 h to remove IgG in the samples.
The samples were centrifuged (5,000 r.p.m.) and the protein concentrations in the
supernatant were determined by Pierce BCA protein assay kit. The protein samples
were incubated with either mouse anti-Drp1 antibody (BD Biosciences, 611113) or
mouse IgG (Sigma, A0919) for 12 h at 4 �C. The Protein A/G agarose beads were
added and incubated overnight at 4 �C. After binding, the beads were washed with

PBS containing 0.1% Triton X-100 for five times. Proteins were eluted by using
0.1 M glycine (pH¼ 2.7) and loaded on SDS–polyacrylamide gel electrophoresis
(PAGE) for Western blot. The antibody used are rabbit anti-Drp1 (Novus Biolo-
gicals, NB11055288, 1:2,000), rabbit anti-CaMKII (GeneTex, GTX111401, 1:1,000)
and mouse anti-rabbit light chain second antibody (Jackson
ImmunoResearch Laboratories, 1:10,000).

In vitro Drp1 phosphorylation and binding assay. The complementary DNA of
mouse WT Drp1 or the S579A (equivalent to S616A in human) mutation was cloned
into pET30a vector between the Nde1 and Not1 sites (Novagen) by using the for-
ward primer: 50-CAT ATG CAC CAT CAT CAT CAT CAT GAG GCG CTG ATC
CCG GTC ATC-30 , and the reverse primer: 50-GCG GCC GCT CAT CAC CAA
AGA TGA GTC TCT CGG ATT TCA-30. The forward primer contains 6� His tag
sequence. E. coli Rosetta (DE3) cells were used for the prokaryotic expression of
Drp1 proteins. When the cell density reached an OD600 of B1.0, protein expression
was induced by adding 0.5 mM isopropyl 1-thio-b-D-galactopyranoside and the cells
were cultured at 4 �C for 7 days. The resulting poly-His-tagged WT Drp1 or S579A
mutation was purified by Nickle resin (Ni Sepharose 6 Fast Flow, GE Healthcare)
followed by imidazole elution. The purified recombinant Drp1 or Drp1 S579A was
evaluated by SDS–PAGE and coomassie blue staining which revealed a purity of
B90% and a molecular weight of B80 kDa (Supplementary Fig. 9). HA-tagged
CAMKIIdC WT was purified from H9C2 myoblast cells after adenovirus-mediated
gene expression. Calmodulin was purchased from Millipore.

For in vitro Drp1 phosphorylation assay, anti-HA magnetic beads (Pierce) were
used to concentrate and immobilize HA-CaMKII. The immobilized HA-CaMKII
beads (5ml) were incubated with purified Drp1 or Drp1 S616A (2 mM) in a 100ml
reaction buffer containing 50 mM Tris–HCl, 150 mM NaCl and 25 mM ATP
(pH7.4) for 24 h at 30 �C in the presence or absence of 1 mM CaCl2 and/or 1 mM
calmodulin. After the incubation, the supernatant was used to detect Drp1
phosphorylation by Western blots using anti-P-S616 antibody (1:1,000, Cell
Signaling) and rabbit anti-Drp1 antibody (1:2,000, Cell Signaling). The beads were
washed, and immobilized HA-CaMKII and Drp1 complex was eluted by boiling,
and the samples were used for Western blot analysis using rabbit anti-HA (1:5,000,
Sigma) and rabbit anti-Drp1 (1:2,000, Cell Signaling) antibodies.

Statistical analysis. All experimental results are expressed as mean±s.e.m. Each
experiment was conducted at least three times. When multiple experiments using
different numbers of animals were pooled for the statistical analysis, the range of
number of animals was indicated in the figure legend. Data comparisons among the
groups were performed using One-way ANOVA and unpaired Student’s t-test
when appropriate. A P value o0.05 was considered statistically significant.

Data availability. All data supporting the findings of this study are available
within the article, its Supplementary Information File, or from the corresponding
authors on request.
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