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Summary

Lymphocytes are unique among cells in that they undergo

programmed DNA breaks and translocations, but that special

property predisposes them to chromosomal instability (CIN),

a cardinal feature of neoplastic lymphoid cells that manifests

as whole chromosome- or translocation-based aneuploidy. In

several lymphoid malignancies translocations may be the

defining or diagnostic markers of the diseases. CIN is a cor-

nerstone of the mutational architecture supporting lymphoid

neoplasia, though it is perhaps one of the least understood

components of malignant transformation in terms of its

molecular mechanisms. CIN is associated with prognosis and

response to treatment, making it a key area for impacting

treatment outcomes and predicting prognoses. Here we will

review the types and mechanisms of CIN found in Hodgkin

lymphoma, non-Hodgkin lymphoma, multiple myeloma and

the lymphoid leukaemias, with emphasis placed on patho-

genic mutations affecting DNA recombination, replication

and repair; telomere function; and mitotic regulation of

spindle attachment, centrosome function, and chromosomal

segregation. We will discuss the means by which chromo-

some-level genetic aberrations may give rise to multiple path-

ogenic mutations required for carcinogenesis and conclude

with a discussion of the clinical applications of CIN and

aneuploidy to diagnosis, prognosis and therapy.
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Cancers are characterized by intrinsic genetic derangements

and may evolve additional mutations that confer a pathogenic

survival advantage. Genetic instability, an increased propensity

towards mutations, is a requirement for malignant transforma-

tion (Loeb, 1991). Two classes of genetic instability occur at

the chromosomal level: gains or losses of whole chromosomes

and chromosome translocations (Lengauer et al, 1998).

Chromosomal aberrations are the most frequent mutations in

lymphoid malignancies (K€uppers, 2005; Nussenzweig & Nus-

senzweig, 2010). The mechanisms behind chromosomal insta-

bility (CIN) in lymphoid malignancies fit within several

definable patterns. We will describe the molecular pathogenesis

of CIN and explore contemporary hypotheses for how chro-

mosome-level errors of DNA handling predispose to cancer.

The terminology relevant to chromosomal mutations is

potentially confusing. Pfau and Amon (2012) provide a

detailed discussion of ‘ploidy’ terminology. ‘Aneuploid’ is

Greek for ‘not correct fold’, or a chromosome number that

is an incorrect multiple of the haploid content. ‘Aneuploidy’

is used in a less strict sense to refer to partial chromosomal

gains or losses, i.e. translocations (abnormal fusions between

heterologous chromosomes). The terms aneuploidy and CIN

are not interchangeable. The former refers to a state of an

erroneous chromosomal content, whereas the latter connotes

a dynamic mutator state characterized by a heightened rate

of chromosomal losses or gains. Aneuploidy is therefore a

likely outcome of CIN, but the presence of one does not

conclusively establish the presence of the other (Lengauer

et al, 1998; Bakhoum & Compton, 2012). Relevant terminol-

ogy and abbreviations are further defined in Table I.

Mechanisms of CIN

Mechanisms

The major areas of vulnerability to chromosomal defects are

the ‘3 Rs’ of DNA processing (recombination, replication

and repair); telomere function; and mitotic spindle function

(regulation of spindle attachment, centrosome function,

chromosomal segregation and cytokinesis). Several other pro-

cesses, most notably infections, are additionally implicated in

contributing to errors of chromosomal content.

Relative contributions of different mechanisms vary based

on disease subtype and cellular origin, determining the pre-
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dominant chromosomal aberrations in each disease. Errors of

mitotic function are primarily responsible for changes in

chromosome number, which have the highest prevalence in

Hodgkin lymphoma (HL) and are frequent in paediatric B-

cell acute lymphoblastic leukaemia (ALL) (K€uppers, 2005);

those diseases arise from lineages that rely less on gene rear-

rangements (pre- or pro-B cells) or have lost gene-rearrang-

ing capability (Reed-Sternberg cells). Translocation-

generating errors of DNA processing and telomere function,

by contrast, account for the high prevalence of translocations

in non-Hodgkin lymphoma (NHL), with approximately 12

breakpoints per case of diffuse large B-cell lymphoma

(DLBCL) (Nanjangud et al, 2002); NHL disease subtypes pri-

marily arise from immature and maturing lymphocytes,

which rely heavily on gene rearrangements.

Recombination, replication and repair

Lymphocyte function depends upon generation of variability

at immunoglobulin (B cells) and T-cell receptor (TCR, T

cells) loci, making lymphocytes heavily reliant upon DNA

processing. We will describe how programmed cellular pro-

cesses and their associated repair mechanisms (Recombina-

tion and Double-strand breaks) and spontaneous DNA

breakages (DNA fragility and Replication) account for the

high prevalence of translocations in lymphomas (Fig 1). Nor-

mal functions that predispose to translocations are summa-

rized in Table II.

DNA fragility

DNA fragile sites are chromosomal regions with an increased

risk of breakage in the setting of partial DNA replication

inhibition and confer an underlying susceptibility to translo-

cations (Fig 1A). They originate from DNA repeat sequences

in polymorphic CCG/CGG trinucleotide repeats (folate sensi-

tive) or AT-rich minisatellite repeats (non-folate sensitive),

causing higher torsional flexibility, ability to form non-B

Table I. Definitions and frequently used abbreviations.

ALL Acute lymphoblastic leukaemia/lymphoma

BL Burkitt lymphoma

Aneuploidy State of erroneous chromosomal content, literally ‘not

correct fold’ or multiple of the haploid chromosomal

content

CIN Chromosomal instability, a dynamic mutator state

characterized by a heightened rate of chromosomal

losses or gains

CLL Chronic lymphocytic leukaemia/small lymphocytic

lymphoma

DLBCL Diffuse large B cell lymphoma

DSB Double-strand break

FL Follicular lymphoma

HL Hodgkin lymphoma

HR Homologous recombination

MCL Mantle cell lymphoma

MM Multiple myeloma

NHEJ Non-homologous end joining

NHL Non-Hodgkin lymphoma

(A)

(B)

(C)

(D)

Fig 1. Processes that can lead to chromosomal translocations. (A)

Fragile sites. The consequences of these repeat sequences are higher

torsional flexibility, ability to form non-B DNA structures, and inter-

ference with chromatin folding. (B) Replication errors. Regulation of

replication origins and replicative helicases protects against chromo-

somal abnormalities. (C) Recombination is mediated in large part by

the RAG1/2 recombinases; errors frequently place proto-oncogenes

under the regulation of strong promoters for immunoglobulin genes.

(D) Double strand break repair takes place through the closely

related functions homologous recombination (HR) and non-homolo-

gous end-joining (NHEJ), crucial players in protecting against chro-

mosomal instability and lymphomagenesis.
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DNA structures and interference with chromatin folding

(Durkin & Glover, 2007). Fragile sites have been mapped to

the sites of chromosomal translocation breakpoints, tumour

suppressor genes, high-level amplifications and oncogenes in

mantle cell lymphoma (MCL) (Bea et al, 2009), multiple

myeloma (MM) (Lukusa & Fryns, 2008) and ALL (G€um€us�

et al, 2002). B cells, which experience high replicative stress,

are subject to a specialized type of genomic hotspot, the early

replication fragile site (ERFS). ERFSs are triggered by replica-

tive stress, including S phase arrest (induced by hydroxycar-

bamide), high transcriptional activity, or oncogene

expression (such as MYC activation). ERFSs may trigger rep-

lication fork collapse and are probably permissive to double-

strand breaks (DSBs), which may lead to translocations.

More than half of recurrent amplifications or deletions in

human DLBCL map to ERFSs (Barlow et al, 2013).

Replication

Damage to the machinery of DNA replication (Fig 1B) is

associated with chromosomal abnormalities and lymphoma

in humans, and murine models provide corroboration

(Table SI). MCM4 forms part of the MCM2-7 complex that

helps license DNA replication origins and serves as the core

of the helicase that unwinds DNA at replication forks. Loss

of the RecQ helicase BLM leads to Bloom Syndrome, charac-

terized by small stature, male infertility, predisposition to

leukaemia and lymphoma, and immunodeficiency. Another

two regulators of replication origins, CDT1 and CDC6, are

overexpressed in a subset of MCL, with associated increases

in chromosomal abnormalities as measured by comparative

genomic hybridization (CGH); the additional prevalence of

TP53 alterations potentiated the rate of chromosomal aberra-

tions (Pinyol et al, 2006).

Recombination

Lymphocytes are unique in that they undergo programmed

DNA breakage and rejoining. B and T lymphocytes achieve

functional flexibility through immunoglobulin and TCR class

switching, respectively, which requires recombination among

the Variable, Diversity, and Joining [V(D)J] regions of

immunoglobulin genes. Heavy usage of recombination places

the lymphocyte at greater risk of pathological translocations;

analogous to the hero’s flaw in classical tragedy, V(D)J

recombination is the hamartia (‘flaw’ or ‘error’ in Greek)

that generates both the lymphocyte’s greatness and downfall.

V(D)J recombination permits diverse antigen presentation

and recognition by lymphocytes. Immunoglobulin and TCR

genes are constructed by recombinational selection of single

V, D, and J regions from multiple, tandem-arrayed V, D,

and J region choices along the loci. Beyond performing V(D)

J recombination, B cells utilize somatic hypermutation and

class switching to augment antibody affinity and broaden

range of function, respectively (K€uppers, 2005; Nussenzweig

& Nussenzweig, 2010; Lin et al, 2012; Alt et al, 2013). Mis-

takes in V gene recombination, class switching, and somatic

hypermutation are features of translocations in B-cell lym-

phomas; the IGH locus on chromosome 14 is a primary ‘hot-

spot’ for translocations in B-cell malignancies, which

probably take place in the bone marrow, early in B cell

development (K€uppers, 2005; Nussenzweig & Nussenzweig,

2010; Bouamar et al, 2013). Aberrant somatic hypermuta-

tion, taking place during the germinal centre reaction, creates

DSB-induced translocations in DLBCL-related proto-oncoge-

nes (Pasqualucci et al, 2001). Erroneous V(D)J recombina-

tion during the development of immature B cells is centrally

involved in the generation of IGH locus breaks that result in

t(11;14) associated with MCL (K€uppers, 2005). By contrast,

T cells do not perform class-switching and somatic hypermu-

tation, and their rearrangements are primarily confined to

the TCR loci on chromosomes 7 and 14 (Ong & Le Beau,

1998). Compared to T cells, B cells’ increased reliance on

translocation-predisposing mechanisms for DNA editing and

breakage accounts for the the vast majority of lymphomas

being of B-cell origin.

V(D)J recombination requires a complex molecular

machinery, at the centre of which is the RAG1/2 recombin-

ase. Multiple lines of evidence support the theory that

RAG1/2 nicks DNA to facilitate recombination, with the

unintended side-effect of generating translocation-prone

lesions in or near oncogenes, leading to their activation

(Nussenzweig & Nussenzweig, 2010). In vitro data suggests

that proto-oncogenes contain cryptic sequences that attract

illegitimate V(D)J recombination events in both the TCR

and IGH loci (Marculescu et al, 2002).

Double-strand breaks

Double-strand breaks may lead directly to translocations and

occur both inside and outside the context of generating

diverse antigen presenters via V(D)J recombination (Fig 1D).

DSB repair takes place through the related functions homol-

ogous recombination (HR) and non-homologous end-joining

(NHEJ), crucial players in protecting against CIN and lym-

phomagenesis.

Double-strand breaks originate from RAG1/2 or activation-

induced cytidine deaminase (AICDA). AICDA is essential for

class-switch recombination and somatic hypermutation during

Table II. Physiological lymphocyte functions that predispose to

pathological translocations.

Cell Process Product

B lymphocyte V(D)J recombination IGH

Somatic hypermutation

Class switch recombination

VJ recombination IGK and IGL

Somatic hypermutation

T lymphocyte V(D)J recombination T-cell receptor genes
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germinal centre maturation of B cells. AICDA destabilizes the

B-cell genome by producing U:G mismatches, causing DSBs,

which then require NHEJ pathways for repair. Regulated AI-

CDA expression leads to Ig class switching, but deregulated

expression causes chromatid breaks and translocations

throughout the genome (Nussenzweig & Nussenzweig, 2010).

Sequencing of human lymphomas suggests that AICDA-

induced breaks at CpG dinucleotides and WGCW (W = A or

T) motifs cause t(11;14) and t(8;14) rearrangements in MCL

and Burkitt lymphoma (BL), respectively (Greisman et al,

2012). Deregulated AICDA expression leads to point muta-

tions in oncogenes in B lymphocytes; non-immunoglobulin

gene mutations may be correlated with the presence of DSBs

(Nussenzweig & Nussenzweig, 2010).

Activation-induced cytidine deaminase is also responsible

for the phenomenon of clustered hypermutation, or kataegis.

AICDA targets highly transcribed super-enhancers, resulting

in clusters of deamination sites, especially the immunoglobu-

lin loci (Qian et al, 2014). B cells are more prone to AICDA-

related kataegis, marked by elevated genomic uracil content,

than non-lymphoma cancers (Pettersen et al, 2015). AICDA-

induced kataegis partially explains why the highly-transcribed

IGH region is a translocational hotspot.

Double-strand breaks may originate iatrogenically due to

alkylator drugs, demonstrated with nitrogen mustard, vincris-

tine, procarbazine and prednisone-treated patients in HL

(Salas et al, 2012) and chemotherapy-treated ALL survivors

(Brassesco et al, 2009). Radiation exposure can cause DSBs,

and translocations may result from ensuing DSB misrepair

(Allan & Travis, 2005).

Homologous recombination utilizes the sequence on the

homologous sister chromatid as a repair template for DSBs.

Generation of a single-stranded 30 end makes homologous pair-

ing and strand invasion possible; in this manner, HR restores

the original sequence prior to a mutagenic event. NHEJ func-

tions through direct reconnection of the ends of DSBs, with the

potential for loss of genetic material, as extended sequence

homology is not utilized. HR is more accurate but is only avail-

able during S and G2 phases of the cell cycle. NHEJ is the less

accurate but more readily available method of DSB repair.

Lymphoid malignancy-related genes involved in HR

include ATM and NBN. ATM, the DNA-damage Ser-Thr

kinase whose autosomal recessive mutation causes ataxia-tel-

angiectasia, repairs RAG-induced locus breaks during V(D)J

recombination (Shiloh, 2003). ATM may play an additional

role in protecting against cyclin-induced DSBs (Aggarwal

et al, 2007). Nijmegen breakage syndrome is an autosomal

recessive disorder caused by mutation of NBN, a downstream

substrate of ATM that locates to DSB sites and participates

in DNA damage repair. Manifestations include microcephaly,

mild growth retardation, intellectual disability and strong

predisposition to lymphoid malignancies, notably DLBCL

and T-cell ALL (Chrzanowska et al, 2012).

As NHEJ confers the risk of loss of genetic material, it is

more likely to contribute to mutagenesis events and translo-

cations, compared with HR. Translocation reporter experi-

ments demonstrate that HR is less proficient at mediating

translocations due to crossover suppression. The core factors

in NHEJ (XRCC4-6, PRKDC, DCLRE1C, and LIG4) perform

the steps of binding, processing and ligating DNA ends, are

essential to immune function and ultimately protect against

translocations (Nussenzweig & Nussenzweig, 2010). Mutation

of DCLRE1C attenuates NHEJ and is accompanied by lymp-

hopenias, immunodeficiency, CIN and Epstein-Barr virus

(EBV)-associated lymphomas (Moshous et al, 2003). The

majority of data regarding the oncogenic potential of NHEJ

core factor loss comes from murine knockout models in

which dual loss of a NHEJ core factor and TP53 leads to

lymphoma (Table SII). A recurring theme is that concurrent

knockout of TP53 is required for malignant phenotypes.

TP53 binding protein 1, TP53BP1, beyond interacting

with TP53, plays a key role in regulating DSB repair.

TP53BP1, a DNA damage repair protein, limits accumulation

of BRCA1 at DSB sites and inhibits HR (Bunting et al,

2010), tipping the balance of DSB repair in favour of NHEJ.

When the lymphocyte requires rapid and less restrictive DSB

repair capacity, TP53BP1 turns on the switch favouring

NHEJ. TP53BP1 copy loss has been demonstrated in cases of

DLBCL (Takeyama et al, 2008).

From DSBs to translocations

The chance of DSBs progressing to translocations is from

0�4% to 1% (McCord & Dekker, 2011). Several factors favour

translocation formation. The spatial positioning of chromo-

somes may play a role. Physical proximity of loci prone to

breakage may increase the frequency of translocation, as

observed with MYC and IGH (Nussenzweig & Nussenzweig,

2010). Deep sequencing of translocation sites in B cells reveals

that active transcription start sites, class-switch recombination

sites and the presence of AICDA activity also favour transloca-

tion formation (Chiarle et al, 2011; Klein et al, 2011).

Telomere dysfunction

Breakage-fusion-bridge cycles

Telomeres are physiological DSBs that protect against end-

to-end fusions (Fig 2): the sparing of chromosomal end-caps

from breakages and ensuing breakage-fusion-bridge (BFB)

cycles led to the discovery of telomeres. Telomere loss is

linked to infertility, impaired haematopoiesis, chromosome

fusions and aneuploidy. Telomere dysfunction and BFB

cycles are strongly implicated as sources of CIN in lymphoid

malignancies. Telomere loss may be a mechanism for CIN in

Reed-Sternberg cells and HL by leading to disruption of the

standard three-dimensional distribution of chromosomes

within the nucleus (Knecht et al, 2009; Guffei et al, 2010).

BFB cycles amplify oncogenic translocation events and pro-

vide a partial explanation why DSBs cause CIN. In murine
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models, BFB cycles amplify the IGH-MYC fusion (Gladdy

et al, 2003). The amplification may result from the absence

of NHEJ or the inability to maintain telomere length, possi-

bly from inadequate telomerase recruitment (Fisher & Zaki-

an, 2005). BFB cycles are responsible for intrachromosomal

amplification of chromosome 21, a cytogenetic marker for a

poor-prognosis subset of precursor B-cell ALL that contains

RUNX1, which encodes a haematopoietic transcription factor

necessary for haematopoiesis and is strongly implicated in

leukaemogenesis (Sinclair et al, 2011; Heerema et al, 2013).

Telomere structure and function

Telomere protection and length homeostasis rely upon the

shelterin complex, consisting of TERF1, TBPL1, TERF2IP,

TINF2, TPP1 and POT1 (de Lange, 2005). Disruption of the

complex by altering expression or mutating one of its compo-

nents may be oncogenic (Begemann et al, 2009). ATM,

known as a V(D)J recombination cofactor, also regulates telo-

mere length (Qi et al, 2003). Maintenance of telomere length

prevents CIN, and telomerase (TERT) plays perhaps the most

crucial role in preventing telomere shortening. Expression of

telomerase (and XRCC5) is reduced in chronic lymphocytic

leukaemia (CLL) (Poncet et al, 2008). By contrast, mutation

of the shelterin component ACD in human cells causes telo-

mere elongation (de Lange, 2005). Down-regulation and dys-

function of ACD and TINF2 are associated with decreased

telomere function in CLL (Augereau et al, 2011).

Telomere length correlates with clinical syndromes and,

occasionally, prognosis. Compared with age-matched healthy

controls, patients with aggressive NHL had T cells, B cells

and granulocytes with telomere shortening; the predominant

malignancies were DLBCL and follicular lymphoma (FL)

(Widmann et al, 2007). Among NHL patients, telomere

length was shortest for MCL and CLL at 3–6 kB; germinal

centre-derived lymphomas (FL, DLBCL, and BL) possessed

the longest telomeres at 6–8 kB (Lobetti-Bodoni et al, 2010).

A separate study confirmed shorter telomere length in MCL

but found no correlations among telomere length, clinical

characteristics, morphology, or karyotype (Cottliar et al,

2009). The dependence of telomere length on lymphoma

subtype may be related to differing expression levels of telo-

merase during B-cell development. Germinal centre B cells

are unique in their expression of telomerase and ability to

elongate their telomeres, which may explain why post-germi-

nal centre B cells and germinal centre-derived lymphomas

have longer telomeres. Nevertheless, a definitive mechanism

leading from telomere loss to CIN remains to be delineated

(Lobetti-Bodoni et al, 2010). Shorter telomeres in HL have

been associated with refractory disease (Knecht et al, 2012)

and predisposition to second malignancies (M’kacher et al,

2007). Telomere length in CLL also correlates strongly with

outcome, with telomere length shorter than 5 kB predicting

reduced treatment-free and overall survival and increased risk

of Richter transformation (Lobetti-Bodoni et al, 2010).

Spindle attachment, centrosomes, and mitotic
regulation

The integrity of cellular chromosomal content depends on

the mitotic spindle, the structure that pulls condensed chro-

mosomes to respective daughter cells, and the centrosomes,

the organelles responsible for establishing and orienting the

mitotic spindle (Vitre & Cleveland, 2012). Spindle and cen-

trosome function guard against chromosome missegregation

and CIN (Fig 3).

Spindle and microtubule attachment

Mutation and dysregulation of kinetochore components are

linked to chromosomal missegregation in lymphoid malig-

Fig 2. Telomere dysfunction and breakage-fusion-bridge (BFB)

cycles. Telomere dysfunction or absence (panel 1) leads to BFB

cycles, in which sister chromatids fuse to each other (panel 2) and

subsequently form internuclear DNA bridges during anaphase (panel

3). These ‘anaphase bridges’ ultimately rupture due to forces of ten-

sion (panel 4), leaving uncapped ends, which are free to repeat the

cycle again, resulting in translocations and aneuploid nuclei (panel

5). BFBs can be considered a variant of abnormal recombination.
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nancy (Fig 3). Deletions in the kinetochore protein BUB1

have been demonstrated in T lymphoblastic lymphoma cell

lines and in tumour cells from ALL and HL patients (Ru

et al, 2002); mutations of BUB1 and the related BUB1B are

associated with complex chromosomal abnormalities in T cell

lymphoma cases (Ohshima et al, 2000).

The germinal centre-expressed gene LMO2, associated with

improved survival in DLBCL (Lossos et al, 2004), is a DNA-

binding protein that regulates expression of kinetochore pro-

teins, centromere proteins and other mitotic regulators.

LMO2 provides convincing evidence that regulation of chro-

mosomal segregation impacts both DLBCL pathogenesis and

prognosis. Bioinformatic analysis of genes implicated in

pathogenesis of cutaneous T-cell lymphoma suggests that ki-

netochore proteins are implicated in the pathogenesis of

mycosis fungoides (van Kester et al, 2012).

Faithful segregation

Regulation of sister chromatid separation at the metaphase-

to-anaphase transition protects against aneuploidy. Deregula-

tion of ubiquitination is associated with chromosome mis-

segregation. Overexpression of the deubiquitinase USP44

triggers prolonged mitotic checkpoint activity, leading to

anaphase bridges, chromosome segregation errors and aneu-

ploidy; furthermore, USP44 is overexpressed in a subset of

T-cell ALL and is believed to regulate cyclin expression

(Zhang et al, 2011). A microarray study of DNA from MCL

cases demonstrated recurrent impact of chromosomal altera-

tions on MAP2, MAP6 and TP53, all of which are associated

with microtubule function (Vater et al, 2009). Similarly, aur-

ora A overexpression and gene polymorphisms may occur in

sporadic cases of MCL, contributing to numerical chromo-

some aberrations (Camacho et al, 2006). PTTG1 is a verte-

brate homolog of yeast securins, which regulate synchronous

sister chromatid separation at the metaphase-to-anaphase

transition. PTTG1 appears correlated with cells that are

highly proliferative, and overexpression has been linked to

aneuploidy (Yu et al, 2003). PTTG1 is highly expressed in

plasma cell tumours, DLBCL, FL and Reed-Sternberg cells

(Saez et al, 2002).

Centrosomal amplification

Centrosome amplification is present in nearly all solid and

haematological malignancies (Zyss & Gergely, 2009). Dysre-

gulation of the centrosome cycle is strongly linked to lym-

phoid malignancy. The leucine zipper transcription factor

MYC may function oncogenically by upregulating aurora

kinases, causing centrosomal amplification and CIN (den

Hollander et al, 2010). In a murine model of large granular

lymphocyte leukaemia (LGL), overexpression of interluekin

15 (IL15) stimulates MYC, in turn upregulating aurora kin-

ases, leading to centrosomal amplification and aneuploidy

(Mishra et al, 2012). Centrosomal amplification can initiate

(A)

(B)

(C)

(D)

Fig 3. Errors of chromosome segregation and mitotic function. (A)

The protease separase is required for chromatid separation and chro-

mosomal stability. (B) Chromosomes attach to the mitotic spindle

via the kinetochore, a multifunctional protein complex that connects

centromeric DNA to the microtubule components of the spindle.

Incorrect or inadequate kinetochore attachment creates a predisposi-

tion to chromosomal segregation errors at anaphase. (C) The centro-

some cycle is closely linked to the cell cycle; duplication of the single

centrosome takes place during G1 and S phase, with the mother and

daughter centrosomes separating during mitosis, leaving the daughter

cells once again with a single centrosome. Extra centrosomes trigger

aneuploidy primarily through disruption of one-to-one kinetochore-

to-spindle pole attachments, as opposed to causing multipolar mito-

ses. (D) Cytokinesis involves the formation of a cleavage furrow

between the dividing daughter cells, leading to the formation of the

midbody, an intracellular protein complex that serves as the last

point of contact between the dividing cells. Failure to complete cyto-

kinesis may disrupt the normal segregation of chromosomes.
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leukaemic transformation in lymphoid lineages early in hae-

matopoiesis. Activating mutations of the centrosomal protein

PTPN11 cause centrosomal amplification and aneuploidy,

resulting in murine ALL (Xu et al, 2011). PTPN11 mutation

is causative of Noonan syndrome, which predisposes patients

to ALL (Pauli et al, 2012). Clinical correlates of centrosome

dysfunction are found in HL (Martin-Subero et al, 2003)

and NHL, in which disease aggressiveness is associated with

the presence of centrosomal abnormalities (Kr€amer et al,

2003).

Cytokinesis failure

Inability to complete cytokinesis is a cause of CIN in B-cell

neoplasms. Haploinsuffiency for the kelch domain-containing

8B protein, KLHDC8B, which localizes to the midbody, has

been linked to familial HL; functional studies of KLHDC8B

demonstrate markedly delayed cytokinesis as the cause of

mitotic errors and aneuploidy (Krem et al, 2012). Video

microscopic observation of HL cell lines confirms that multi-

nucleated Reed-Sternberg cells arise from incomplete cytoki-

nesis of mitotic daughter cells that remain joined via the

midbody bridge (Rengstl et al, 2013). The tumour suppressor

RASSF1 regulates several mitotic functions, including cytoki-

nesis. Murine knockout of Rassf1a together with Tp53 caused

increased predisposition to lymphoma. Video microscopy of

embryonic fibroblasts from the mice demonstrated cytoki-

netic failure and CIN, with a significant fraction of tetraploid

cells (Tommasi et al, 2011). Cytokinesis and abscission fail-

ure represent attractive, though relatively new, explanations

for CIN in lymphoid malignancy.

Other pathogenic mechanisms

Structural chromosomal abnormalities in lymphoid malig-

nancies may arise from pathogenic processes such as infec-

tions, epigenetic changes and oxidative stress.

Infections

Infections of lymphocytes may contribute substantially to

CIN. The human T-cell lymphotrophic virus type 1 (HTLV-

1) contributes to CIN via the Tax oncoprotein, which

promotes generation of reactive oxygen species (ROS) and

centrosomal amplification (Chlichlia & Khazaie, 2010). EBV

infection, linked to HL and BL, promotes CIN via multiple

mechanisms. EBV impairs DSB repair, telomere function,

spindle checkpoint function and TP53 expression; it may also

upregulate AICDA (Bornkamm, 2009; Gruhne et al, 2009).

Kaposi sarcoma-associated herpesvirus causes CIN by sup-

pressing TP53 function (Si & Robertson, 2006). Chlamydia

psittaci, which is thought to be the causative infectious agent

of ocular mucosa-associated lymphoid tissue lymphomas,

may contribute to CIN by triggering DNA oxidative damage

and interfering with the mitotic checkpoint by causing cen-

trosome abnormalities, spindle defects, multinucleation and

abscission failure (Brown et al, 2012; Collina et al, 2012).

Epigenetics

Epigenetic alterations are linked to CIN and lymphoid malig-

nancy. In FL and DLBCL, defects in histone acetylation lead

to activation of BCL6 and inactivation of TP53 (Pasqualucci

et al, 2011). These acetylation errors may also play a role in

FL transformation (Pasqualucci et al, 2014). In the previously

described murine model of LGL (Mishra et al, 2012), IL15

expression downregulates MIR29B, leading to increased

DNMT3B expression, enhanced genomic methylation and

CIN. In fact, DNA methylation and modulation of chroma-

tin structure favour translocations (Lin et al, 2012). Epige-

netic deregulation has prognostic impact and is associated

with aggressiveness and chemotherapy-responsiveness of

DLBCL (Jiang & Melnick, 2015).

Oxidative stress

Reactive oxygen species are associated with both CIN and

malignancy; the mechanisms are not fully elucidated, though

free radical generation leading to DNA damage is a plausible

explanation. The antioxidant manganese superoxide dismu-

tase (SOD2) appears to be protective; murine haploinsuffi-

ciency for Sod2 predisposes to T-cell lymphomas (Van

Remmen et al, 2003). In a murine T-cell lymphoma model,

suppression of ROS by antioxidant enzymes may protect

against CIN by suppressing chromosome breakage and thus

translocations (van de Wetering et al, 2008).

Cellular and molecular consequences of CIN

The molecular consequences of aneuploidy and CIN that

lead to malignancy are only partially delineated. Effects of

aneuploidy include cellular stress, progression of aneuploidy

to CIN and chromothripsis (Gordon et al, 2012; Pfau &

Amon, 2012). We will review key mechanisms, with an

emphasis on lymphoid cells.

Ubiquity

Lymphoma- or leukaemia-associated aneuploidies are insuffi-

cient for disease. Translocations occur in healthy lympho-

cytes and increase with age. There are 0�024 chromosomal

aberrations per cell in the elderly, versus 0�0043 per cell in

non-elderly controls (Mladinic et al, 2010). Likewise, the t

(11;14)(q13;q32)/IGH-CCND1 associated with MCL has a

1–2% prevalence in the blood of healthy individuals (Hirt

et al, 2004), and the t(14;18)(q32;q21)/IGH-BCL2 of FL is

present in 36% of studied healthy controls and approxi-

mately 1–100 per 106 peripheral blood cells; in FL patients

the t(14;18) is more prevalent, upwards of 3000 per 106 cells

(Schuler et al, 2003). Thus, secondary genomic alterations
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are required for malignant transformation, in concordance

with data from murine models of FL (McDonnell & Kors-

meyer, 1991) and MCL (Gladden et al, 2006). Aneuploidy is

a phenomenon of even ‘healthy’ lymphoid cells.

Resolution

Cells have preexisting mechanisms in place to resolve aneu-

ploidies to prevent a state of CIN. The TP53 pathway plays a

central role and induces cell-cycle arrest and apoptosis in

human cells in response to aneuploidy (Thompson & Comp-

ton, 2010). Minor aneuploidies trigger cell-cycle arrest,

whereas substantial aneuploidies trigger apoptosis (Pfau &

Amon, 2012). Chronic aneuploidy has negative effects on cel-

lular physiology, including slowed proliferation, altered gene

transcription, proteotoxic stress and metabolic stress; proteo-

toxic stress leads to ROS generation, which activates ATM

and stimulates DSB repair (Gordon et al, 2012; Pfau &

Amon, 2012). Hyperploid cells have been shown to induce

an endoplasmic reticulum stress response and become immu-

nogenic, making them susceptible to attack and elimination

by the immune system (Senovilla et al, 2012).

Progression

Aneuploidy may progress with accumulation of additional

chromosomal gains or losses. Expression of the BCR-ABL1

gene product in Philadelphia chromosome-positive ALL in

three separate murine cell lines induced conserved clonal

chromosomal aberrations (Rudolph et al, 2005). BCR-ABL1

may cause additional chromosomal abnormalities by influ-

encing the proteolytic activity of separase, a required com-

ponent for chromatid separation and chromosomal

stability. MCL demonstrates accumulation of chromosome

structural-level mutations beyond the characteristic IGH-

CCND1 product, including uniparental disomies of 17p,

resulting in TP53 disruption (Bea et al, 2009). The accu-

mulation of new, malignancy-promoting genetic alterations

is called clonal evolution. In a study of 336 cases of FL,

investigators used principle components analysis to identify

cytogenetic evolutionary markers for particular evolutionary

subgroups, namely 6q-, +7, and der(18)t(14;18). Del(17p)

and +12 were markers for poor prognosis (H€oglund et al,

2004).

Chromosomal instability appears to be part of a multistep

pathway of tumour initiation in both solid and haematologi-

cal malignancies, though aneuploidy-generating events that

disable the TP53 pathway may be sufficient for tumour for-

mation (Bakhoum & Compton, 2012). Numerous models of

CIN require concomitant TP53 dysfunction to generate lym-

phoid malignancy (Table SIII). The TP53 pathway induces

cell-cycle arrest and apoptosis in response to aneuploidy,

functioning as the central component of the aneuploidy sur-

veillance system, and when mutated is a ‘second hit’ that

allows CIN to progress to lymphoid cancer.

Micronuclei and chromothripsis

Micronucleus formation, leading to subsequent chromothrip-

sis, provides a mechanism by which aneuploidy can lead to

multiple malignancy-inducing mutation events in lymphoid

malignancy (Fig 4). Chromothripsis (thripsis means ‘pulveri-

zation’ in Greek), the phenomenon of a single chromosome

pieced together from tens to hundreds of rearranged frag-

ments, gives insight into how aneuploidy causes multiple

new mutations over a brief time span (Stephens et al, 2011;

Fig 4. Aneuploidy gives rise to chromosome shattering, or chro-

mothripsis. Micronuclei originate from chromosome fragments that

arise due to DNA damage, such as double strand breaks or missegre-

gated chromosomes. The whole or partial chromosomes are seques-

tered into structures similar to but much smaller than normal nuclei.

The DNA of chromosomes or chromosome fragments in micronuclei

does not appropriately condense at the G2/M cell cycle checkpoint,

and the chromosomes are then pulverized during mitosis. The DNA

is subsequently reassembled into patchwork (or Frankenstein) chro-

mosomes that are ultimately reincorporated into the main cellular

nucleus.
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Crasta et al, 2012). Chromothripsis has been documented in

DLBCL (Morin et al, 2013), CLL (Stephens et al, 2011; Edel-

mann et al, 2012; Bassaganyas et al, 2013), MCL (Moncunill

et al, 2014) and MM (Magrangeas et al, 2011); in CLL and

MM, the presence of chromothripsis is correlated with

aggressive disease and poor outcome. Chromothripsis has

also been described in the HL-derived cell lines L-1236,

HDLM-2, and L-428 (Nagel et al, 2013).

Clinical application of CIN

Chromosome-level mutations play a prominent role in the

diagnosis and treatment of lymphoid malignancies. This may

be related to the relative ease with which diagnostic genetic

material is obtained from most haematological malignancies.

Diagnosis and prognosis

Several lymphoid malignancies carry characteristic, though

not pathognomonic, chromosomal alterations (Fig 5 and

Table SIV). Two phenomena are of special clinical relevance.

One is the impact of whole-chromosome gains versus losses

on the prognosis of B-cell ALL. Losses correlate with poor

prognosis (long-term survival of 40% or less), whereas gains

of 5–20 chromosomes (hyperdiploidy) confer more favour-

able prognoses (up to 90% long-term survival). In fact, the

degree of negative prognostic impact from hypodiploidy cor-

relates with the number of chromosomes lost, as demon-

strated by two studies. A study of adults and children

demonstrated that ALLs bearing from 42 to 44 or 45 chro-

mosomes had markedly better outcomes than ALLs bearing

fewer than 42 chromosomes, termed low hypodiploidy or

near-haploidy (Harrison et al, 2004). A paediatric study simi-

larly showed that leukaemias with 44 chromosomes had

markedly better outcomes (69% long-term survival) than

leukaemias with fewer than 44 chromosomes (38% long-term

survival) (Nachman et al, 2007). This dose-dependent effect

may occur because mono- or oligo-chromosomal losses are

more likely to eliminate essential tumour suppressors than

gains are likely to cause overexpression of deleterious oncog-

enes.

The second phenomenon is double-hit NHL. IGH-onco-

gene fusions are insufficient to cause FL and MCL in murine

models and occur benignly in patients (IGH-MYC fusions

are notable exceptions). However, ‘double-hit’ lymphoma,

characterized by expression of two IGH-oncogene fusions, is

an aggressive variant of DLBCL with a refractory disease

course and an extremely poor prognosis. The most common

pair of transactivated genes is BCL2 and MYC, though MYC/

BCL6 combinations and MYC/BCL2/BCL6 ‘triple-hit lympho-

mas’ have been described (Aukema et al, 2011).

Chromosomal instability is associated with adverse out-

comes in both B- and T-cell malignancies. In DLBCL, ana-

phase fixation of tumour cells showed that the extent of

chromosome missegregation predicts survival; a doubling of

segregation errors led to a 24% decrease in overall survival

and a 48% decrease in relapse-free survival (Bakhoum et al,

2011). Loss or mutation of TP53 confers poor outcomes in

multiple lymphoid malignancies. TP53 mutations group with

poor prognosis and low hypodiploidy in ALL (Stengel et al,

2014), shorter survival in MM (Chng et al, 2007), and poor

prognosis in CLL, FL, and DLBCL, though not in HL (Che-

ung et al, 2009). TP53 dysfunction may exacerbate CIN and

accumulation of additional cytogenetic abnormalities, notably

amplification of 2p and del(6q) in CLL (Rudenko et al,

2008).

Comparative genomic hybridization measures chromo-

somal aberrations and copy number alterations (CNAs),

indirect measures of CIN that provide prognostic and patho-

logical insights. Increased CNAs confer higher risk in CLL

(Edelmann et al, 2012). Transformed FL has higher genetic

complexity (measured by whole genome sequencing and

copy number analysis) than FL, implicating a role for CIN

(Pasqualucci et al, 2014). In DLBCL, CNAs that decrease

TP53 activity and perturb cell cycle regulation lead to higher

genomic complexity and worse prognosis (Monti et al,

2012). Increased numbers of chromosomal aberrations confer

poor prognosis in HTLV-1-induced adult T-cell leukaemia-

lymphoma (Tsukasaki et al, 2001). However, CNAs are not

correlated with survival in MCL (Halldorsdottir et al, 2011).

Numerous human genes that protect against or contribute

to aneuploidy or CIN are clinically linked to lymphoid

malignancy. In Table SV lists genes associated with CIN; that

list may warrant consideration for inclusion in diagnostic

and prognostic platforms.

Therapeutics

Several currently marketed therapeutic agents may affect CIN

in lymphoid malignancies. DNA methylation status impacts

proteins that regulate chromosomal stability. Hypomethylat-

ing agents, specifically 5-azacitidine and decitabine, may have

the effect of unsilencing tumour suppressors that protect

against CIN. 5-azacitidine has been shown to enhance the

toxicity of standard chemotherapy towards lymphoid cell

lines (Valdez et al, 2012), and decitabine reprogrammed

chemoresistant DLBCL lines to become doxorubicin-sensi-

tive, probably by reactivation of the transcription factor

SMAD1 (Clozel et al, 2013); the same study included a phase

I trial in which 5-azacitidine was administered as a priming

agent to sensitize high-risk DLBCL to standard chemoimmu-

notherapy. An alternative mechanism of action for hypome-

thylating agents is suggested by the ability of decitabine to

downregulate MYC expression (Guan et al, 2013); as dis-

cussed above, MYC induces DSBs and disrupts telomere

function.

The proteasome inhibitors bortezomib and carfilzomib

take advantage of proteotoxic stress and upregulation of the

unfolded protein response induced by chronic aneuploidy.

Proteasome inhibitors are theorized to negatively impact
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chromosomally unstable cell lines by exaggerating stress

energy phenotypes, rendering cells more susceptible to apop-

tosis. Supporting data for this mechanism of action is cur-

rently limited to preclinical cell line and animal studies

(Nawrocki et al, 2005; Neznanov et al, 2011; Gordon et al,

2012).

Several new classes of pharmaceutical agents exploit the

CIN of malignant lymphoid cells. CIN makes tumour cells

prone to attack by a variety of mechanisms. CIN induces cel-

lular energy and proteotoxic stress responses, requiring acti-

vation of heat shock protein (HSP) chaperone and

autophagy pathways for cell survival; compounds specifically

interfering with those pathways may have differential toxicity

towards aneuploid cells and thus therapeutic potential (Pfau

& Amon, 2012). HSP90AA1 (also termed HSP90) inhibitors

demonstrated efficacy against primary effusion lymphoma

Fig 5. Disease-specific cytogenetic associations. This Circos-generated (Krzywinski et al, 2009; http://circos.ca) representation of lymphoid cancer-

associated rearrangements includes clinically notable associations and is not intended to be exhaustive. Chromosomes are labelled by number.

Boxes with black borders indicate deletions, and boxes without borders represent rearrangement ‘hotspots’. Translocations are indicated by con-

nections within the circle. Boxes and connections are colour-coded by disease per the legend within the circle. Key trends include IGH on chro-

mosome 14 as a translocation partner for oncogenes in several malignancies, loss of TP53 on chromosome 17 as a poor prognostic indicator and

MYC overexpression as a marker for aggressive malignancies. Please see Table S4 for a more detailed listing and relevant citations.
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cells in a murine preclinical model (Nayar et al, 2013), and a

phase I trial of an HSP90AA1 inhibitor induced stabilization

and a partial response in a patient with MM and a patient

with transformed lymphoma, respectively (Reddy et al,

2013). Preclinical studies in DLBCL cell lines show that the

checkpoint kinase inhibitor PF-0477736 causes DNA damage

accumulation and apotptosis. It is thought that DSBs accu-

mulate, leading to CIN (Derenzini et al, 2015).

Kinesin spindle protein (KSP), a kinesin motor superfam-

ily member, is an ATP hydrolase that regulates microtubule

movement during mitosis and governs centrosome separation

and normal bipolar spindle assembly. Inhibition of KSP

causes cell cycle arrest and cell death (Sarli & Giannis, 2008).

KSP inhibitors probably exaggerate the predisposition of

chromosomally unstable cells to make chromosome segrega-

tion errors, inducing catastrophic aneuploidies that are

incompatible with survival. Preliminary trials of KSP inhibi-

tors in lymphoid malignancy patients are underway. Initial

data indicate efficacy in refractory MM (Lee et al, 2013), an

ability to induce disease stabilization in refractory DLBCL

and a favourable toxicity profile (Gerecitano et al, 2013).

Preclinical studies show that knockdown of KIFC1 (also

termed HSET), a kinesin motor family member, is selectively

toxic to cells with supernumerary centrosomes; KIFC1 inhi-

bition represents an attractive molecular target to stress and

eliminate malignant cells with centrosomal amplification or

abnormal spindle architecture (Gordon et al, 2012).

Chromosomal instability itself can be a therapeutic goal,

with AURKA and AURKB serving as enticing molecular tar-

gets (Bakhoum & Compton, 2012). Pharmaceuticals that

introduce a substantial level of CIN are capable of inducing

apoptosis. AURKB is the catalytic component of the chromo-

some passenger complex, promotes alignment of chromo-

somes at metaphase, ensures proper microtubule-kinetochore

connections, and is necessary for cytokinesis. Overexpression

of AURKB is associated with aneuploidy, yet AURKB inhibi-

tion stabilizes microtubules and increases chromosome mis-

segregation (Farag, 2011); either too much or too little

AURKB activity is deleterious. Early-phase clinical trials of

aurora kinase inhibitors in lymphoid malignancies show

promise of efficacy in T315I-mutated Philadelphia-positive

ALL (Giles et al, 2007; Cortes-Franco et al, 2009). The AU-

RKA substrate TACC3, a motor spindle protein that stabi-

lizes the mitotic spindle and prevents tripolar mitoses, shows

promise as a therapeutic target in lymphoid malignancies.

Preclinical studies demonstrate that conditional Tacc3 knock-

out causes regression of thymic lymphomas in mice and that

TACC3 is required for cell proliferation in BL and T-cell

ALL cells (Yao et al, 2012).

Telomeres and telomerase are also potential targets for the

induction of therapeutic CIN, though progress in solid

tumours has outpaced that in lymphoid malignancies (Giles

et al, 2007; Cortes-Franco et al, 2009). The telomerase inhib-

itor BIBR1532 has shown growth-inhibitory and pro-apopto-

tic effects against CLL and MM cell lines (El-Daly et al,

2005) and rapid cell death in pre-B ALL cells (Bashash et al,

2013). The anti-telomerase oligonucleotide GRN163 showed

similar effects in NHL and MM cell lines (Wang et al, 2004).

In vivo studies of an antisense oligonucleotide against telo-

merase demonstrated efficacy against a hepatic lymphoma

model in mice (Yang et al, 2012). Initial clinical trials have

explored adoptive immunotherapy against telomerase. A telo-

merase-targeting adoptive immunotherapy was developed

that successfully exerted specific tumouricidal activity of

cytotoxic T cells against autologous adult T cell leukaemia

tumour cells in 10 patients (Miyazaki et al, 2013). A phase I/

II two-arm trial of tumour antigen vaccination against telo-

merase and survivin in MM patients pre- and post-autolo-

gous stem cell transplantation showed a 36% immune

response rate to the vaccination, but there was no impact of

vaccination on 3-year overall survival (83%) compared with

pneumococcal conjugate control (Rapoport et al, 2011).

Therapeutic agents that manipulate CIN offer a novel and

promising field of study, but their mechanism of action

raises the hypothetical but significant concern for long-term

toxicity; exacerbating CIN poses risk for chromosome-level

mutagenesis and thus secondary malignancies. CIN-targeting

therapeutics are in early-phase trials; later-phase studies will

need to monitor for potential malignant adverse effects of

agents that directly impact chromosomal dynamics.

Concluding thoughts

Accumulating data from study of lymphoid malignancies

supports the view that translocations and chromosome segre-

gation errors are tumourigenic, though other oncogenic

molecular events, such as TP53 loss and chromothripsis, may

be necessary to cause lymphoma or leukaemia. There is a

substantial body of literature establishing the concept that

chromosomal translocations are not random, but instead the

sequelae of discrete oncogenic or epigenetic molecular events

(Lin et al, 2012). The non-random nature of translocations

and the association of CIN with poor outcomes corroborate

a pathogenic role. Chromosome-level mutations have initially

served as keys to diagnosis and prognosis, and they are

becoming increasingly important to unravelling the patho-

physiology of lymphoid diseases and designing treatment

approaches.
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