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Organoid cystogenesis reveals a critical role of
microenvironment in human polycystic
kidney disease
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Polycystic kidney disease (PKD) is a life-threatening disor-
der, commonly caused by defects in polycystin-1 (PC1) or
polycystin-2 (PC2), in which tubular epithelia form fluid-filled
cysts1,2. Amajor barrier to understandingPKD is the absence of
human cellular models that accurately and efficiently recapit-
ulate cystogenesis3,4. Previously, we have generated a genetic
model of PKD using human pluripotent stem cells and derived
kidneyorganoids5,6. Hereweshow that systematic substitution
of physical components can dramatically increase or decrease
cyst formation, unveiling a critical role formicroenvironment in
PKD.Removal of adherent cues increases cystogenesis 10-fold,
producing cysts phenotypically resembling PKD that expand
massively to 1-centimetre diameters. Removal of stroma
enables outgrowth of PKD cell lines, which exhibit defects
in PC1 expression and collagen compaction. Cyclic adenosine
monophosphate (cAMP), when added, induces cysts in both
PKD organoids and controls. These biomaterials establish
a highly efficient model of PKD cystogenesis that directly
implicates the microenvironment at the earliest stages of
the disease.

PKD affects one in ∼1,000 people worldwide, with no known
cure1,2. Animal models do not fully genocopy or phenocopy
human PKD, and are too complex physiologically for a minimal
reconstitution approach7–10. A human cellular model is needed to
complement animal models and reveal the early pathophysiology
of PKD. We have generated human pluripotent stem cells (hPSCs)
with targeted, biallelic mutations that lack the mature form of
PC1, or any detectable PC2, using the Cas9/CRISPR (clustered
regularly interspaced short palindromic repeats) gene editing
system (Supplementary Fig. 1a,b)6,11. Under adherent culture
conditions, kidney organoids derived from PKD1−/− or PKD2−/−

hPSCs form fluid-filled cysts, although cystogenesis is highly
inefficient (∼7% of organoids), and its mechanism has not been
determined6. We used this system as a starting point to investigate

how cysts form and identify modulators of cystogenesis. Time-
lapse imaging revealed that cyst formation involved two steps:
first, rearrangement of a tubule within an organoid, resulting in
deformation of linear shape to form a ‘pre-cyst’ surrounding an
hollow pocket; and second, partial detachment of the pre-cyst from
the underlying stratum followed immediately by rapid expansion,
resulting in a buoyant cyst tethered to an adherent organoid remnant
(Fig. 1a and Supplementary Fig. 1c,d, and Supplementary Movie 1).
Cysts therefore arose from whole tubular segments that expanded
and partially detached from the adherent surface.

On the basis of these results, we hypothesized that adherent forces
played a critical role in limiting tubular deformation and subsequent
cyst formation. To test this, organoids were purified on day 21 of
differentiation, prior to the formation of cysts, and transferred to
wells coated with an anti-adhesive hydrogel to generate suspension
cultures (Fig. 1b and Supplementary Fig. 1e, and Supplementary
Movie 2). After two weeks in suspension, ∼75% of PKD organoids
formed large, free-floating cysts (Fig. 1c,d), a 10-fold increase
in cyst formation over adherent cultures6. Control organoids of
identical genetic background formed cysts only very rarely under
these conditions, indicating that cystogenesis remained a specific
consequence of the PKD mutations (Fig. 1c,d). As an inherent
property of this differentiation system in both PKD and control
cultures, each of the organoids placed into suspension was relatively
small (∼250 µm in diameter) and contained only ∼5 tubules,
therefore a significant proportion (∼15%) of individual tubules
deformed into cysts. In long-term cultures, PKD cysts further
expanded massively and reached diameters of ∼1 centimetre,
reflecting a 4,000-fold increase in size over the original organoid
(Fig. 1e). Even aftermanymonths in suspension, cysts remained rare
among control organoids, which formed smaller, denser aggregates
(Fig. 1d,e). Thus, modification of the material environment enabled
the establishment of a highly efficientminimal reconstitution system
for PKD cystogenesis.
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Figure 1 | Removal of adherent cues establishes a highly efficient model of PKD cystogenesis. a, Still images from Supplementary Movie 1 showing cyst

formation from a PKD organoid in adherent culture. b, Schematic of high-efficiency organoid cystogenesis protocol. c,d, Representative images of kidney

organoids (c) and quantification of cyst formation after two weeks of suspension culture (d) (CTRL1 versus PKD1−/−, n=3 separate experiments, ±s.e.m.,

t(3.663) = 21.05, p=5.8949× 10−5; CTRL2 versus PKD2−/−, n=4 separate experiments, ±s.e.m., t(5.458) = 10.66, p=7.3731× 10−5). e, 6-well

(3.5 cm) dishes containing PKD or control organoids after nine months of culture. Zoom is shown of dashed box region. Scale bars, 100 µm (a–c)

and 1 cm (e).

Histological analysis revealed that PKD organoid cysts were
lined with a thin, squamous epithelial layer, approximately one
single cell in thickness, with irregular edges, surrounding a hollow
lumen (Fig. 2a). When compared to cysts from various stages
and subtypes of clinical PKD in vivo, organoid cysts most closely
resembled cysts in prenatal PKD, which extended radially from
the medulla to the cortex and appeared prominent just beneath
the nephrogenic zone (Fig. 2a and Supplementary Fig. 2a). Similar
cysts were previously reported in patients with biallelic mutations
in PKD1 (ref. 12). In contrast, postnatal cysts from patients
exhibited a more smooth-edged and multi-layered appearance,
and were accompanied by interstitial nephritis and inflammatory
infiltrates not observed prenatally or in organoids (Fig. 2a and
Supplementary Fig. 2a).

We previously identified Lotus tetragonolobus lectin (LTL) and
E-cadherin (ECAD), respectively, as markers of organoid proximal

and distal tubules in these cultures6. In non-cystic organoids and
tissues, these markers were not mutually exclusive, but rather
formed a continuum, with enrichment in their respective nephron
segments (Supplementary Fig. 2b). In PKD organoid cysts, LTL
and ECAD largely overlapped within the cyst-lining epithelium,
exhibiting patches of specific enrichment, whereas PODXL, a
marker enriched in kidney podocytes, was not detected in cysts,
similar to prenatal and postnatal PKD patient kidneys (Fig. 2b,c and
Supplementary Fig. 2c)12–14. Approximately 80% of organoid cysts
expressed both LTL and ECAD, which were also detected within
the tubular remnants continuous with these cysts (Fig. 2b–f and
Supplementary Fig. 2c). Cyst-lining cells in organoids were heavily
coated with primary cilia and formed tight junctions between cells
in a cobblestone pattern (Fig. 2g). Interestingly, organoid cysts in
long-term suspension cultures also contained a subpopulation of
stromal cells that co-expressed smooth muscle α-actin (SMA) and
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Figure 2 | Organoid PKD cysts phenotypically resemble PKD patient cysts. a, Paraffin sections dyed with haematoxylin and eosin from PKD organoids, or

human kidney biopsies taken from patients with autosomal dominant PKD (ADPKD), autosomal recessive PKD (ARPKD), and Meckel syndrome.

Identifying labels are provided for orientation and emphasis of specific histological features (c, kidney capsule; z, nephrogenic zone; cy, large cyst;

post, postnatal). b,c, Confocal immunofluorescence showing nephron segment markers in PKD organoid cysts (b) or PKD patient kidneys (c). Zoom shows

close-up of dotted boxed region. Arrow represents an area of specific enrichment for LTL. Glomeruli (g) do not appear cystic. Neither LTL nor ECAD is

detected in a large ADPKD cyst, whose epithelium has dedifferentiated (∗). d, Percentage of PKD organoid cysts labelling positive for LTL, ECAD, or both

markers (n=3 separate experiments, ±s.e.m.). e, Confocal optical sections showing LTL affinity in a representative cyst in suspension.

Higher-magnification (hi mag) image shows LTL in the adjoining organoid remnant portion of this cyst. f, LTL in cyst-lining epithelial cells. g, Cilia

(acetylated α-tubulin) and tight junctions (ZO1) in representative cyst-lining epithelial cells. h, Representative confocal images showing stromal markers in

PKD organoid cyst and patient cysts. Scale bars, 200 µm or 25 µm (f,g).

laminin, markers expressed in cystic stroma of PKD patient kidneys
(Fig. 2h and Supplementary Fig. 2d). Collagen deposition in these
cysts remained scant, similar to cysts in prenatal PKD kidneys,
whereas postnatal PKD kidney cysts exhibited prominent fibrosis
(Supplementary Fig. 2e). PKD organoid cysts in vitro therefore
recapitulated hallmark features of PKD patient cysts, particularly
the very early stages of PKD.

PKD organoid cysts in adherent cultures exhibited a two-fold
increase in phosphorylated histone H3 (pH3), compared to LTL+

tubular cells from non-mutants, indicating increased proliferation
(Fig. 3a,b). Similarly, in large cysts in long-term suspension cultures,
dividing cells were detected within the cyst-lining epithelium
and in anaphases oblique and internal to the plane of the cyst
(Fig. 3c and Supplementary Fig. 3a,b and Supplementary Movie 3).
When large PKD cysts were microdissected away from their
remnant tubules, they immediately deflated, reflecting the loss
of accumulated fluid (Fig. 3d). Cysts contained from ∼30,000
to ∼600,000 cells, whereas the original organoids from which
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Figure 3 | PKD organoid cysts arise from hyperproliferative KTECs. a,b, Representative images (a) and quantification of pH3 (b) in adherent PKD organoid

cysts under adherent conditions. Boxes show 25th and 75th percentiles, whiskers indicate min and max values (n= 115 tubules pooled from seven separate

experiments and 26 cysts pooled from six separate experiments, ±s.e.m., t(37.16) = 3.491, p=0.0013). c, Three-dimensional confocal reconstruction of a

large cyst in suspension. Arrowhead indicates anaphases. See also Supplementary Movie 3. d, Representative images showing microdissection of large

cysts in suspension. e, Cell counts in organoids immediately after placement in suspension (Org.) or in microdissected cysts grown for several months

(Cyst). Dashed lines represent nonlinear breaks in the y-axis. f, Heat maps from microarray analysis of cysts and tubule remnants from cultured organoids,

showing differentially expressed genes (p-value ≤ 0.05) contributing to activation of E2F targets, mTORC1 signalling, and MYC. Columns represent

samples and row represents gene; red indicates greater than the mean (white) and blue, less than the mean values. Scale bars, 100 µm.

they derived contained only ∼3,000 cells, indicating extensive
proliferation (Fig. 3e). Pathway-based global gene expression
microarray analysis revealed significant enrichment of hallmark
gene sets for cell cycle progression, mTOR signalling, and MYC
activity in cysts, compared to remnant tubules (Fig. 3f). PKD cysts
therefore arose from hyperproliferative kidney tubular epithelial
cells (KTECs), a hallmark of mouse and human autosomal
dominant PKD (ADPKD)8,9,14,15.

The process of purifying organoids and transferring them into
suspension might induce cyst formation by provoking an injury
response16,17. To test this, organoids were purified and immedi-
ately replated onto wells coated with a thin layer of extracel-
lular matrix (ECM) but lacking stroma. The replated organoids
re-adhered but did not form cysts, indicating that injury alone
was not sufficient to promote cystogenesis (Fig. 4a). Under these
conditions, we observed that both control and PKD organoids
formed expanding cell outgrowths very quickly, which could be

further expanded as monolayers up to three passages (Fig. 4a and
Supplementary Fig. 3c). Cells derived from organoid outgrowths
exhibited a cobblestone-like epithelial morphology and predomi-
nantly expressed markers specific to KTECs, including LTL and
kidney injurymolecule-1 (KIM-1), similar to flow-sorted LTL+ cells
from organoid cultures (Fig. 4b–d and Supplementary Fig. 3d,e).
Removal of stroma thus stimulated proliferation and migration of
organoid cells.

We further utilized these organoid KTEC cell lines to inves-
tigate the expression of PC1, whose structure suggests a pos-
sible role in cell adhesion18,19. In contrast to many cell types,
KTECs derived from organoid outgrowths expressed sufficient
quantities of endogenous PC1 to detect in lysates by immunoblot
(Fig. 4e)20,21. Surprisingly, we found that PC1 protein was nearly
undetectable in KTECs derived from PKD2−/− organoids, using an
antibody against the amino terminal fragment (Fig. 4e)22. Undif-
ferentiated PKD2−/− hPSCs exhibited a similarly strong decrease
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Figure 4 | Outgrowth of PKD cell lines reveals a critical deficiency in PC1 expression. a, Phase-contrast image of organoid explants on days 1, 4, and 12

after replating. b–d, Wide-field fluorescence (b) and confocal sections (c,d) showing epithelial and kidney-specific marker expression in representative

kidney organoid cell monolayers. e,f, Representative immunoblots of PC1 and PC2 in kidney organoids (e) and undifferentiated hPSCs (f). g, PC1 protein

levels in undifferentiated hPSCs, normalized to β-actin loading control (CTRL, n=6; PKD1−/− and PKD2−/−, n=3, ±s.e.m., CTRL versus PKD1−/−,

t(6.936) = 6.603, p=0.00031 (∗∗∗); CTRL versus PKD2−/−, t(4.837) = 5.669, p=0.0026 (∗∗)). h, PC2 protein levels in undifferentiated hPSCs,

normalized to β-actin loading control (CTRL, n=6; PKD1−/− and PKD2−/−, n=3, ± s.e.m., CTRL versus PKD1−/−, t(6.451) = 0.9247, p=0.3884 (NS);

CTRL versus PKD2−/−, t(5) = 8.006, p=0.0005 (∗∗∗)). i–k, Representative immunoblot (i) and quantification of PC1 and PC2 levels (j,k) in hPSCs

treated with four different PKD2 siRNAs (pooled or individually) or a scrambled (Scr) siRNA control (n=3). Statistical analysis: j, Unpaired t-test with

Welch’s correction, Scr versus pool, t(2) = 11, p=0.0075; No. 2 versus Scr, t(2) = 1.747, p=0.2227; No. 3 versus Scr, t(2) = 22.66, p=0.0019; No. 4

versus Scr, t(2) = 9.467, p=0.0110; No. 5 versus Scr, t(2) = 11.56, p=0.0074. k, Unpaired t-test with Welch’s correction, Scr versus pool, t(2) = 16.92,
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p=0.0002; No. 5 versus Scr, t(2) = 20.28, p=0.0024. Scale bars, 100 µm (a,b) or 10 µm (c,d). NS, not significant.

in PC1 expression levels (Fig. 4f,g). PKD1 transcripts were ex-
pressed at normal levels in PKD2−/−hPSCs, suggesting that PC1
loss occurs through a post-transcriptional mechanism (Supplemen-
tary Fig. 4a,b). Conversely, in PKD1−/− cells, PC2 expression levels
were unchanged from isogenic controls, although its localization
to primary cilia was strikingly decreased, consistent with previous
reports (Fig. 4f,h and Supplementary Fig. 4c–e)5,20,21. Furthermore,
treatment of control hPSCs with three different siRNAs, which
knocked down PC2 protein to 12.6 ± 0.02% of normal levels (avg.
± s.e.m.), induced a corresponding decrease in PC1 protein to
30.5 ± 0.03% of normal levels (Fig. 4i–k). These studies revealed,
unexpectedly, that PC2 was required for PC1 amino-terminus
expression in human cells, in contrast to reports in mouse Pkd2−/−

cells20,21. Differences between species, cell types, or exogenous

versus endogenous expression levels may account for this discrep-
ancy, as PC1 is a low-abundance protein in humans, who appear
to be highly sensitive to reductions in its expression, compared
to mice6,7,23,24.

A unifying hypothesis that emerges from these studies is that the
ECM microenvironment functions to maintain tubular shape and
adhesion through interactions involving PC1’s long, extracellular
domain18,19,25. To directly test the effect of PKD mutations on the
matrix microenvironment, we embedded individual organoids
(∼250 µm diameter) into larger collagen droplets (∼4mm
diameter), and placed these in suspension. Droplets implanted with
organoids did not form cysts, but rather contracted dramatically
over a period of approximately 1–2 weeks (Fig. 5a). PKD1−/−

organoids were quantitatively impaired in their ability to compact
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collagen droplets, compared to isogenic controls (Fig. 5b).
Contracted droplets comprised an inner core of solid collagen
encompassed by a thin, continuous epithelium of LTL+ECAD+

KTECs (Fig. 5c,d). During the formation of these structures, KTECs
could be observed migrating out of the implanted organoid to coat
the surface of the droplet (Fig. 5e). Collagen staining appeared
more intense after contraction, and collagen fibres appeared
denser ultrastructurally, indicating that the changes in droplet

size involved physical compression (Fig. 5f,g). Collectively, these
findings revealed that kidney organoid epithelia were capable of
dramatically remodelling their ECM microenvironment through
migratory forces, and that this property was partially dependent on
PC1 (Fig. 5h).

cAMP signalling is hypothesized to contribute significantly
to PKD, but can also promote fluid accumulation in non-PKD
epithelia3,26. Forskolin, a powerful agonist of adenylyl cyclase,
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induced rapid and dose-dependent swelling of adherent organoids
into round, cyst-like structures that retained the shape of the
original tubules (Supplementary Fig. 5a,b and Supplementary
Movie 4). The non-degradable cAMP analog 8-Br-cAMP also
induced swelling, although the effect was much less pronounced
(Supplementary Fig. 5b,c). Upon withdrawal of these agents, the
swollen structures deflated and the organoids returned towards
their original size (Supplementary Fig. 5a–c). Both PKD and
non-PKD organoids swelled and deflated to a similar degree
after cAMP stimulation, indicating a modifier effect (Supple-
mentary Fig. 5a–d and Supplementary Movie 4). One limita-
tion of this system is that we were unable to examine collecting
ducts, which are the primary target of cAMP-mediated candi-
date therapeutics10,27, because these structures do not mature in
kidney organoids6,28–30.

In addition to gene-edited mutants, we also investigated the
potential of using induced pluripotent stem cells (iPSCs) derived
from PKD patients to model disease5. We found that iPSCs
from human patients exhibited dramatic line-to-line variability
in their abilities to form organoids, regardless of PKD genotype
and organoid differentiation protocol (Supplementary Fig. 6a–c).
The morphology of tubular structures also varied noticeably
between different lines (Supplementary Fig. 6c). As such differences
reflected a degree of heterogeneity that would confound analysis
of PKD-specific effects, we focused our studies on the CRISPR-
mutant hPSCs.Although patient-derived organoids presentedmuch
variability, they could eventually represent valuable tools to develop
personalized medicine approaches.

In conclusion, by combining PKD organoids withmodular phys-
ical environments, we have established a human cellular system
that models PKD with high efficiency and specificity. Comparison
of PKD and non-PKD organoids suggests a specific, primary role
for microenvironment and adhesion in early stages of the disease.
Interventions that strengthen stromal or scaffolding components
can provide a critical cue favouring migratory repair over cysto-
genesis. Our biochemical studies indicate a central requirement
for PC1, which we propose functions as an adhesion regulator
that maintains tubular architecture through interactions with the
microenvironment. The efficiency, specificity, and modularity of
organoid cultures provide critical insight into the biomaterial basis
of human disease, with great potential for mechanistic studies and
therapeutics development.

Methods
Methods, including statements of data availability and any
associated accession codes and references, are available in the
online version of this paper.
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Methods
Kidney organoid differentiation.WA09 (H9) hPSCs with CRISPR-targeted
PKD1−/− or PKD2−/− mutations, or passage- and procedure-matched non-mutant
isogenic controls, were maintained feeder-free on 1% Reduced Growth Factor
GelTrex (Life Technologies) in mTeSR1 (Stem Cell Technologies) and dissociated
with Accutase (Stem Cell Technologies), as previously described6. hPSC lines were
derived from either the WA09 hESC line (WiCell) or the WTC11 iPSC line
(Gladstone Institute). Identity of parental hPSC lines was confirmed to be correct
based on matching the known morphology, karyotype, and pluripotency
characteristics of these lines. Cell lines tested negative for mycoplasma. 60,000 cells
from each cell line were plated per well of a 24-well plate pre-coated with GelTrex
in mTeSR1 supplemented with 10 µM Rho-kinase inhibitor Y27632 (StemGent).
The media was replaced with 500 µl mTeSR1 + 1.5% GelTrex at 16 h, 500 µl mTeSR1
at 36 h, Advanced RPMI + Glutamax (from Life Technologies) + 12 µM
CHIR99021 (Stemgent) at 50 h, and RB (Advanced RPMI + Glutamax + B27
Supplement, from Life Technologies) at 86 h. RB was changed two days later and
every three days thereafter. Alternatively (Protocol B, Supplementary Fig. 6b),
undifferentiated hPSCs were plated overnight and then treated with 8 µM
CHIR99021 in APEL media (Stem Cell Technologies) for 48–72 h, 30 ngml−1 FGF9
or FGF2 (Peprotech) + 1 µgml−1 heparin (Stem Cell Technologies) in APEL for
96 h, and subsequently cultured in APEL, which was replaced every three days.
Organoids typically became visible by light microscopy 12–18 days after plating.

Cyst formation. In adherent cultures (untreated), ‘cysts’ were identified as large,
balloon-like, translucent structures that swayed in response to agitation. Flat rings
and dilated tubules were not counted as cysts and occasionally appeared even in
non-PKD controls. Forskolin and 8-Br-cAMP (Sigma) were added to adherent
cultures on the twenty-first day of differentiation, resulting in rapid formation of
cysts that typically did not sway in response to agitation. Wells were imaged using a
Nikon TiE inverted wide-field microscope and cysts were quantified using ImageJ
cell counter. To generate large cysts in suspension, adherent organoids were
microdissected with a 23-gauge syringe needle from 24-well plates on an inverted
phase-contrast microscope, and carefully transferred using a transfer pipette into a
low-adhesion 6-well plate (Corning) containing 2ml RB. The organoids were
isolated on the twenty-first day of differentiation, before cysts formed. RB media
was changed by gravity every three days, and cystogenesis was assessed at two
weeks after replating.

Generation of KTEC lines from organoid. To prepare monolayers of kidney cells
for analysis, freshly isolated organoids were immediately plated onto tissue culture
dishes pre-coated with 1% GelTrex (Thermo Scientific) and cultured for one week
in RB, and the resulting epithelial outgrowths were processed for immunoblot and
immunofluorescence. Alternatively, to isolate KTECs using flow cytometry, entire
organoid cultures were incubated with fluorescein-conjugated LTL (FL-1321,
Vector Labs) diluted 1:500 into RB for four hours, dissociated with Accutase,
pelleted, resuspended in flow sorting buffer: 1% FBS, 10mMHEPES buffer in
phosphate buffered saline (PBS) (Thermo Scientific). LTL+ cells were isolated on a
FACSAria Cell Sorter (BD Biosciences) and replated onto GelTrex-coated tissue
plates in RB.

Organoid embedding in collagen droplet. To embed organoids in collagen
droplets, a sheet of Parafilm was soaked in 70% ethanol, air dried, and pressed
against the holes of a box of gel-loading pipette tips (1–200 µl, Fisher Scientific
02-707-138) to create a dimpled mould31. One organoid was placed in each dimple
and 30 µl of 7mgml−1 collagen I (Corning) was added. The droplets were
incubated 25min at 37 ◦C and carefully resuspended in 3ml of RB media in an
untreated 6-well plate. The media was changed weekly and the droplets were
imaged after two weeks of incubation using a Nikon Ti Inverted Wide-field
microscope and a Nikon 1 J1 Camera. Droplet diameters were measured using NIS
Elements imaging software (Nikon) and normalized to the diameter of empty
droplets from the same set, for a total of three sets. Droplets that failed to undergo
compaction (∼20% in control and∼50% in PKD samples) were excluded. Droplets
were fixed with 4% paraformaldehyde (PFA) for 20min at room temperature,
incubated 16 h in 30% sucrose (Sigma) in water, mounted in Tissue-Tek (Sakura),
flash frozen, and cryosectioned onto SuperfrostPlus slides (Fisher). Sections were
stained in Picro-sirius red solution (Sky-Tek laboratories) for one hour, rinsed in
two changes of 0.5% acetic acid solution, and dehydrated in two changes of absolute
ethanol before mounting. Immunofluorescence was performed as described below.

siRNA and immunoblotting. 16 h after plating, hPSCs were transfected with
Dharmacon Smartpool siRNAs (Fisher Scientific) directed against PKD2 or
scrambled control in mTeSR1 without antibiotics. Media was changed 24 h later.
72 h after siRNA treatment, cells were lysed in RIPA buffer (Thermo Scientific)
containing 1× Complete mini EDTA-free protease inhibitor, PhosSTOP, and
benzonase nuclease (all Sigma). Protein lysates were quantified using a BCA protein
assay kit (Thermo Fisher). To prepare the samples, 50 µg of protein were mixed

with Pierce Lane Marker Reducing Sample (Thermo Fisher) and incubated at 40 ◦C
for 5min. Samples were separated in a 4–20% protein gel (Bio-Rad) and transferred
into a PVDF membrane using standard protocols and 0.01% SDS in the transfer
buffer (0.25M Tris Base, 1.92M Glycine, 0.1% SDS). Gels included pre-stained
molecular weight markers (Precision Plus Protein Kaleidoscope Standards,
Bio-Rad), which were annotated manually by overlay of the film onto the
nitrocellulose membrane. The antibodies used for the immunoblots were anti-PC1
(sc-130554, Santa Cruz), anti-PC2 (sc-10376, Santa Cruz) and anti-β-actin (4970S,
Cell signaling). The intensity ratio of the experimental band to the loading control
was normalized to 1 in the negative control (unmodified or untreated hPSCs). The
remaining bands were normalized to the control and averaged for at least three
independent experiments. Examples of unprocessed immunoblots with the original
standards hand-marked are provided in Supplementary Fig. 7.

Global gene expression and bioinformatics analysis. For systems biology analysis
of cysts, cystic epithelium or tubule remnants were manually separated from
PKD1−/− organoids (71–87 days of culture from three experiments) using a
22-gauge needle under a dissecting microscope and flash frozen separately in liquid
nitrogen. Total RNA containing small RNA was extracted from seven paired
samples (cysts and tubule remnants from the same organoid) using RNeasy Micro
Kit (Qiagen) with an on-column DNA digestion step to minimize genomic DNA
contamination. The sample integrity of the RNA was assessed using the RNA 6000
Nano Assay on 2100 Bioanalyzer (Agilent Technologies) to ensure that RNA
integrity number (RIN) was greater than 7. Microarray experiments were
performed at The Centre for Applied Genomics (TCAG) at the Hospital for Sick
Children. Following the manufacturer’s protocol, 10 ng of total RNA was labelled
using the GeneChip WT Pico Reagent Kit (Affymetrix). Fragmented and
biotin-labelled ss-cDNAs were then hybridized to GeneChip Human Gene 2.0
ST Arrays (Affymetrix) for 16 h at 4 ◦C. Hybridized arrays were stained and washed
in the Affymetrix Fluidics Station 450. Thereafter, the arrays were scanned on an
Affymetrix GeneChip Scanner 3000 and the image (.DAT) files were preprocessed
using the Affymetrix GeneChip Command Console (AGCC) software v.4.3 to
generate cell intensity (.CEL) files. After image processing, the array data were
uploaded to the Affymetrix Expression Console software v1.4.1 for further
processing and quality control. All quality assessment metrics, including spike-in
controls during target preparation and hybridization were found within the
boundaries. The probe set signal intensities were then extracted and normalized
using the robust multi-array average (RMA) algorithm embedded in the Expression
Console software, which consists of convolution background correction, quantile
normalization, and median polish summarization. Downstream paired sample
t-test was carried out via Partek Genomics Suite 6.6 (Partek) to determine
differentially expressed genes between cysts and tubules. Gene set enrichment
analysis (GSEA, http://software.broadinstitute.org/gsea/index.jsp) was used as the
primary tool to identify potential gene pathways or gene sets that may modulate
cystic kidney organoid growth32. Before running GSEA, Affymetrix probe sets were
collapsed to one gene level, paired sample t-test statistics scores were used to create
a ranked list of genes of the entire data set (in total, 29406 unique genes with gene
symbols). GSEA was performed using the Hallmark gene sets fromMolecular
Signatures Database (MSigDB, http://software.broadinstitute.org/gsea/msigdb/
collections.jsp#H)33. The description of each gene set can be found on the MSigDB
website. We defined overrepresented gene sets with a false discovery rate
(FDR) ≤ 0.25. For RNA-Seq analysis of hPSCs, RNA was prepared from isogenic
sets of cell lines using the RNEasy Mini Kit (Qiagen), checked for high integrity on
an Agilent Bioanalyzer, prepared using the TruSeq stranded mRNA library kit
(Illumina), and sequenced on an Illumina NextSeq500 75 × 75 paired-end
high-output run. Samples were aligned to an hg19 reference sequence.

Immunofluorescence. To fix organoids, an equal volume of 8% paraformaldehyde
(Electron Microscopy Sciences) in PBS was added to the culture media (4% final
concentration) for 15min at room temperature. After fixing, samples were washed
in PBS, blocked in 5% donkey serum (Millipore)/0.3% Triton X-100/PBS, and
incubated overnight in 3% bovine serum albumin/PBS with primary antibodies.
The next day, samples were washed in PBS and incubated overnight with
Alexa-Fluor secondary antibodies and DAPI (Thermo Scientific), followed by PBS
washes. For frozen tissue sections, fresh tissues were incubated in 4%
paraformaldehyde for one hour at 4 ◦C, incubated 16 h in 30% sucrose (Sigma) in
water, mounted in Tissue-Tek (Sakura), flash frozen, and cryosectioned onto
SuperfrostPlus slides (Fisher) before blocking. Paraffin sections were prepared by
fixing overnight in methacarn (60% absolute methanol, 30% chloroform, 10%
glacial acetic acid, Sigma) or in 4% PFA, followed by paraffin embedding,
sectioning, deparaffinization in 100% xylene (3 washes, 5min each), dehydration
in graded 70%–100% ethanol (5min each), and heating in citrate buffer pH 6.0
(Sigma) in a pressure cooker (Instant Pot IPDUO60) for three minutes prior to
immunostaining. Kidney organoid cysts were embedded in 2% agarose prior to
paraffin embedding. Histology stains (Haematoxylin and eosin, or Masson’s
trichrome) were applied to paraffin sections by UW Pathology. Primary antibodies
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included acetylated alpha-tubulin (051M4770; Sigma), ZO-1 (339100; Invitrogen),
LTL (FL-1321, Vector Labs), PC2 (sc-25749, Santa Cruz), NPHS1 (R&D AF4269,
1:500), KIM-1 (MAB1750, R&D), PODXL (R&D AF1658, 1:500), ECAD (Abcam
ab11512), SMA (Sigma A2547, 1:500), LAMA1 (Sigma L9393a, 1:500), and pH3
(sc-8656, Santa Cruz). Fluorescence images were captured using a Nikon
epifluorescence 90-I (upright), Nikon Ti Inverted Wide-field microscope, or Nikon
A1R and C1 confocal microscopes. pH3+ cells were scored manually in cysts or
tubular organoids of similar sizes.

Electron microscopy. Droplets were gently transferred with a cut-off transfer
pipette into EM fix: 0.15 M sodium cacodylate trihydrate (Sigma) dissolved in
water (pH 7.3) containing 4% formaldehyde and 2% glutaraldehyde (Electron
Microscopy Sciences), and stored overnight. Samples were post-fixed with osmium
tetroxide solution (Sigma), dehydrated in serial ethanol dilutions (Sigma), and
embedded in epoxy resin. Ultrathin sections (80 nm) were mounted on 200 mesh
copper grids and stained with uranyl acetate and lead citrate (Electron Microscopy
Sciences). Imaging was performed with a JEOL JEM-1010 TEM and a FEI Tecnai
G2 Spirit TEM.

PKD patients. All human samples were obtained with informed consent and in
compliance with all ethical regulations under the auspices of protocols approved by
the UW Institutional Review Board. These included an ADPKD kidney donated by
a 46-yr-old female (generous gift of Virginia Mason Hospital), an anonymized
biopsy of a 15-week control kidney (UWLaboratory of Developmental Biology),
and anonymized biopsies of kidneys with clinically diagnosed Meckel syndrome
(20 weeks), ARPKD (29 weeks, 6 months, or 6 years.), and orofaciodigital
syndrome (18 yr.) from Seattle Children’s Hospital Histopathology. Patients with
kidney disease were enrolled in our study for the purposes of collecting cells and
tissues as positive controls. These samples were collected from patients of all ages

without any discrimination with respect to gender, age, race, family history, or
other co-variates. PKD samples were chosen from this collection at random and
based on availability to represent a range of disease severities, ages, and genotypes.

Statistical analysis. Experiments were performed using a cohort of PKD hPSCs,
generated as described previously6, including three PKD1−/− and two PKD2−/−

hPSC lines, and a total of six isogenic control lines that were subjected to CRISPR
mutagenesis but were found to be unmodified at the targeted locus. Quantification
was performed on experiments performed side by side on at least three different
occasions. Error bars are mean ± standard error (s.e.m.). Statistical analyses were
performed using GraphPad Prism Software. To test significance, p values were
calculated using two-tailed, unpaired t-test with Welch’s correction (unequal
variances). Statistical significance was defined as p<0.05. Exact p values, t values
and degrees of freedom are provided in the figure legends.

Data availability.Microarray data are MIAME compliant and publicly available
in Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo)
(ID: GSE101308). All remaining datasets are available from the corresponding
author upon reasonable request.
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