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Background: Transcriptional dysregulation drives cancer formation but the underlying mechanisms are still
poorly understood. Renal cell carcinoma (RCC) is the most common malignant kidney tumor which canon-
ically activates the hypoxia-inducible transcription factor (HIF) pathway. Despite intensive study, novel
therapeutic strategies to target RCC have been difficult to develop. Since the RCC epigenome is relatively
understudied, we sought to elucidate key mechanisms underpinning the tumor phenotype and its clinical
behavior.
Methods: We performed genome-wide chromatin accessibility (DNase-seq) and transcriptome profiling
(RNA-seq) on paired tumor/normal samples from 3 patients undergoing nephrectomy for removal of RCC. We
incorporated publicly available data on HIF binding (ChIP-seq) in a RCC cell line. We performed integrated anal-
yses of these high-resolution, genome-scale datasets together with larger transcriptomic data available through
The Cancer Genome Atlas (TCGA).
Findings: Though HIF transcription factors play a cardinal role in RCC oncogenesis, we found that numerous
transcription factors with a RCC-selective expression pattern also demonstrated evidence of HIF binding near
their gene body. Examination of chromatin accessibility profiles revealed that some of these transcription factors
influenced the tumor's regulatory landscape, notably the stem cell transcription factor POU5F1 (OCT4). Elevated
POU5F1 transcript levels were correlated with advanced tumor stage and poorer overall survival in RCC patients.
Unexpectedly, we discovered a HIF-pathway-responsive promoter embedded within a endogenous retroviral
long terminal repeat (LTR) element at the transcriptional start site of the PSOR1C3 long non-coding RNA gene
upstream of POU5F1. RNA transcripts are induced from this promoter and read through PSOR1C3 into POU5F1
producing a novel POU5F1 transcript isoform. Rather than being unique to the POU5F1 locus, we found that HIF
binds to several other transcriptionally active LTR elements genome-wide correlating with broad gene expres-
sion changes in RCC.
Interpretation: Integrated transcriptomic and epigenomic analysis of matched tumor and normal tissues from
even a small number of primary patient samples revealed remarkably convergent shared regulatory landscapes.
Several transcription factors appear to act downstream of HIF including the potent stem cell transcription factor
POU5F1. Dysregulated expression of POU5F1 is part of a larger pattern of gene expression changes in RCC that
may be induced by HIF-dependent reactivation of dormant promoters embedded within endogenous retroviral
LTRs.
© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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Reseach in context

Evidence before this study

Themost common kidneymalignancy, renal cell carcinoma (RCC),
canonically stabilizes the hypoxia inducible factor (HIF) family of
transcription factors early during its oncogenesis. The HIFs are po-
tent transcription factors that initiate a gene expression program
that promotes angiogenesis and metabolic derangements in RCC
cells. Prior to this study, the genome-wide epigenetic changes
that predicate these gene expression changes had not been char-
acterized. It had also been known that additional transcription fac-
tors collaboratewithHIF to direct RCC's epigenetic landscape, but
their regulatory relationship to HIF had remained unclear.

Added value of this study

This study reports the generation and integrated analysis of
nucleotide-resolution functional genomic datasets (chromatin ac-
cessibility and gene expression) on patient-matched tumor and
normal primary cultures of RCC and its cell of origin – renal cortical
tubule cells. Several transcription factors with increased expres-
sion in RCC show evidence of HIF binding near their gene body.
Many of these same transcription factors show enrichment of
their DNA binding motifs in open chromatin regions in the RCC
samples. One of these, the stem cell transcription factor,
POU5F1 is consistently upregulated in tumor cells both in this
study and the larger The Cancer Genome Atlas (TCGA) cohort.
Using 5′-RACE, the authors identified a novel HIF-responsive
POU5F1 transcript initiating from an endogenous retroviral long
terminal repeat (LTR) element. Rather than being unique, the au-
thors found that several other endogenous retroviral LTRs in the
RCC genome exhibit HIF binding and transcriptional activity thus
providing an epigenomic mechanism for recurrent transcriptional
signatures seen in RCC.

Implications of all the available evidence

This study and its associated datasets enrich our understanding of
the complex gene regulatory programs that lie downstream of HIF
activation in RCC. The use of patient-matched tumor-normal sam-
ple pairs greatly increases the robustness of genomic signals. HIF-
dependent upregulation of POU5F1 and other genes induced in
RCC may be influenced by exaptation of promoters embedded
within usually dormant endogenous retroviral LTRs. Taken to-
gether, these data provide a novel epigenetic mechanism of gene
dysregulation in RCC with immediate implications for patient
prognosis.
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1. Introduction

Development of new therapeutic strategies for cancer treatment de-
pends on identification of critical mechanisms and pathways utilized by
tumor cells. Numerous insights have been gleaned from large tumor
consortium programs such as The Cancer Genome Atlas (TCGA),
which has extensively catalogued somatic mutations and selected phe-
notypic features from thousands of tumor and normal tissue samples
across a variety of human cancers. To some extent, insights from such
broad-based studies are intrinsically limited by tumor heterogeneity
(including presence of non-tumor cell types) and general sample vari-
ability, which may collectively obscure sensitive and robust detection
of subtle changes in cellular pathways such as transcription factor regu-
latory networks that define and govern the malignant state [1].
Epigenomic mapping of tumors in large consortium-driven projects
has generally focused on DNA methylation analysis (TCGA, Roadmap
Epigenomics Project) and targeted histone modification profiling
using ChIP-seq (Roadmap). These systematic approaches leverage the
fact that patterns of regulatory DNA (i.e. promoters, enhancers, insula-
tors) activation and organization are extensively disrupted in cancer
[1,2]. Generic identification of regulatory DNA is best achieved by
open chromatin profiling methods such as DNase-seq [3] and ATAC-
seq [4]. However, the complexity of these deep epigenomic mapping
methods has focused their initial application to mouse tissues [5], cul-
tured human cell lines [6], whole adult and fetal human tissues [7], he-
matopoietic neoplasms (where both malignant and normal cells of
origin are readily obtained [8,9]), and a limited number of epithelial ma-
lignances [2]. When deploying sensitive epigenomic methods, matched
normal tissues of origin provide the best control for patient genotype
and environmental exposure but they are often discarded or unavail-
able at the time of tumor resection. Even very recent large-scale
pan-cancer chromatin accessibility profiling projects have focused on
detecting patterns across hundreds of tumor samples with heteroge-
nous cellular composition andhave omitted analysis ofmatchednormal
tissue controls [10]. Taken together, these hurdles have limited the
characterization of primary human epithelial malignancies together
with their patient-matched normal cells-of-origin.

In this regard, clear cell renal cell carcinoma (RCC), the most com-
mon and lethal kidney malignancy, is an ideal model cancer system
for high-resolution functional genomic analyses for several reasons.
First, RCC tissues are readily available since the standard of care is surgi-
cal removal of the often-large tumor mass, frequently with plentiful
adjacent, non-neoplastic tissue. Second, the tumor cells and their cells-
of-origin – proximal tubule epithelial cells [11] – are readily isolated at
high purity, grow well in short-term primary cultures and maintain
their genomic and phenotypic characteristics in vitro [12]; this removes
the obstacle of contaminating non-relevant cell populations. Third, the
majority of spontaneously arising tumors utilize a common oncogenic
pathway: stereotypic loss of chromosome 3p, resulting in loss of hetero-
zygosity for the VHL tumor suppressor gene combinedwith inactivation
of the remaining allele of VHL [13]. While it is well understood that loss
of functional VHL protein leads to constitutive stabilization of two DNA-
binding transcription factors, hypoxia-inducible factors 1α and 2α
(HIF1α, HIF2α) [14], theprecise nature of genomic dysregulationdown-
stream of HIF pathway activation that drives oncogenesis remains
poorly understood. Given that RCC has an annual incidence of N60,000
andmortality of N14,000 in theUnited States alone (NCI SEER database),
additional insights are urgently needed to develop new treatments.

Here, using a combination of DNase I-hypersensitivity mapping
(DNase-seq) and transcriptome profiling (RNA-seq) of primary tumor
and normal cell cultures derived from three patients, we uncover a
high degree of concordance in the epigenomic landscape of RCC. Analy-
ses of these high-resolution referencemaps in conjunctionwithpublicly
available datasets [15–17] revealed unexpected insights into the ge-
nome dysregulation that influences the RCC phenotype. This approach
provides a general framework for the analysis of other solid tumors
for which matched malignant and normal cells can be isolated at high
purity, and greatly amplifies the utility of cancer -omics catalogs.

2. Materials and methods

2.1. Patient tissue sample procurement and primary cell culture

Malignant and normal kidney tissues were obtained from patients
undergoing radical nephrectomy for clear cell renal cell carcinoma
with informed consent for DNA sequencing obtained prior to the sur-
gery. The study (#1297) and consent forms were approved by the Uni-
versity of Washington's IRB. Patient 1's cultures were derived from an
80-year-old woman; Patient 2's cultures were derived from a 62-year-
old man and Patient 3's cultures were obtained from a 63-year-old
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man. At the time of surgery, all patients presentedwith localized disease
(stage 1). Approximately 1cm3 portions of tumor (from a central, non-
necrotic location) and uninvolved kidney cortex (usually from the
pole furthest from the tumor mass) were harvested and transported
in RPMI medium on ice. These tissues were then minced with a steril-
ized razor blade and the resulting fragments were placed in 20mls of
pre-warmed RPMI medium (without serum) supplemented with
Accutase (Sigma, diluted 1:10), collagenase P (Roche, 100 μg/ml) and
trypsin/EDTA (Gibco, 0.25% solution diluted 1:10). The tissue fragments
were digested at 37 °C for 20 min with vigorous agitation. After diges-
tion, the tissue fragments were spun down andmaceratedwith a sterile
plunger from a 5-ml syringe. These softened tissue fragmentswere then
transferred into tissue culture flasks with pre-warmed culture medium
(RPMI supplemented with 10% fetal bovine serum and ITS+ supple-
ment, Corning). After 3–4 days (for tubule cultures) and 7–10 days
(for RCC cultures), the tissue fragments were decanted and the adher-
ent cells were fed with fresh medium. At this stage, primary tubule
cells grew rapidly and had an epithelioid morphology, while primary
RCC cells grew slowly, were larger and exhibited frequent cytoplasmic
vacuoles typical of adenocarcinoma. Cells were sub-cultured 1:4 when
they reached 80% confluence and used within two passages for all
experiments.

2.2. 786-O and ACHN cell culture

The VHL-null 786-O (CRL-1932) and VHL-wildtype ACHN (CRL-
1611) renal cell carcinoma cell lines were obtained from ATCC. Cells
were cultured in RPMI medium supplemented with 10% fetal bovine
serum, non-essential amino acids, glutamine and penicillin/streptomy-
cin. Cells were sub-cultured 1:10 when they reached 80% confluence
using Accutase to disaggregate adherent cells.

2.3. Processing of cell cultures for DNase-seq

Primary tubule and RCC cultures, 786-O and ACHN cells were sub-
jected to DNase I treatment, small DNA fragment isolation and double-
stranded library construction per published ENCODE protocols or a
recently described low-input single-stranded library construction
protocol [18,19]. Libraries were subjected to paired-end (2x36bp)
sequencing. The majority of datasets used in this study were
deemed of high quality (signal portion of tags, SPOT N 0.4) [6]. See Sup-
plemental Table 1 for cell input, quality metrics and other sequencing
metadata.

2.4. Processing of cell cultures for RNA-seq

Disaggregated cells from primary tubule or renal cell carcinoma cul-
tures, 786-O and ACHN cells were washed once in PBS and stabilized in
RNALater (Ambion). Total RNA was extracted using a mirVana RNA
isolation kit (Ambion). Illumina sequencer compatible libraries were
constructed using a TruSeq Stranded Total RNA Library Prep Kit with
Ribo-Zero Gold (Illumina) and subjected to paired-end (2x76bp) se-
quencing. See Supplemental Table 1 for cell input, quality metrics and
other sequencing metadata.

2.5. Karyotyping of primary cell cultures

G-band karyotyping of theprimary renal cell carcinoma cultureswas
performed by the University ofWashington Cytogenetics and Genomics
Laboratory in the Department of Laboratory Medicine.

2.6. Assessing VHL status of primary cell cultures

Genomic DNA from 200,000 cells from each of the primary cultures
was extracted using an ArchivePure DNA purification kit from
5Prime. Oligonucleotide primers covering exons 1–3 of the VHL gene
(VHL_exon1_F1, GCGCGAAGACTACGGAGGTC; VHL_exon1_R1, CGTG
CTATCGTCCCTGCT; VHL_exon2_F1, TCCCAAAGTGCTGGGATTAC;
VHL_exon2_R1, TGGGCTTAATTTTTCAAGTGG; VHL_exon3_F1, TGTTGG
CAAAGCCTCTTGTT; VHL_exon3_R1, AAGGAAGGAACCAGTCCTGT)
were used to amplify genomic sequence using KAPA HiFi Taq polymer-
ase (Kapa Biosystems). The resulting PCR products were separated on
an agarose gel, purified and subjected to Sanger sequencing (EuroFins
Scientific).

2.7. 5′-RACE for novel POU5F1 transcripts

Total RNA was extracted from 7 × 106 786-O cells using the RNeasy
Mini kit (QIAGEN cat #74104) according to manufacturer's protocol.
We then used 9 μg total RNA input for RLM-RACE (ThermoFisher Scien-
tific First-Choice RLM-RACE, cat# AM1700), following the manufactur-
er's “standard scale” 5′-RACE protocol, which ligates an adapter to the
5′ endof full-length, cappedmRNAmolecules. Theprimary PCR reaction
was carried out using a common forward primer recognizing the 5′-
RACE adapter and reverse primer located in each of the first five coding
exons of POU5F1 (“R2” primers), using cycling conditions 94 °C 3 min,
35 cycles of 94 °C 3 min/60 °C 30s/72 °C 2 min, 72 °C 7 min. Of the 50
μl primary PCR, 2 μl was used for a secondary PCR with nested primers
in the 5′-RACE adapter and within each of the five POU5F1 coding
exons (“R1” primers), using the same cycling conditions as the primary
PCR. Secondary PCRs were run on an agarose gel, the bands were ex-
cised and purified using a MinElute Gel Extraction kit (QIAGEN cat
#28604) according to themanufacturer's protocol, andwere sequenced
from both ends using Sanger sequencing.

2.8. RT-PCR for canonical and novel POU5F1 transcripts

A clone of the VHL-null 786-O RCC cell line stably transduced with
VHL (786-O + VHL) and an empty vector (786-O + EV) control line
[20] were obtained from Dr. William Kaelin's laboratory (Dana-Farber
Cancer Institute, Boston, MA). Approximately 200,000,786-O + EV
and 786-O + VHL cells were exposed in triplicate to hypoxia (2% O2)
or normoxia for 24 h. RNA was extracted using the RNeasy Plus Mini
Kit (Qiagen, Valencia, CA), cDNA was synthesized using random
hexamers and the Superscript IV First-Strand Synthesis Kit and was
used to seed triplicate real-time PCR reactions using SYBR Green and
standard cycling conditions for the Applied Biosystems 7900HT
thermocycler. Primers were canonical OCT4 (5′-GAGCAAAACCCGGA
GGAGT-3′ and 5′-TTCTCTTTCGGGCCTGCAC-3′); novel OCT4 (5′-GCTT
GGCAAATTGCTCGAGTT-3′ and 5′-TGGAGTCCGGACATCTGAAAC-3′),
and ACTB (5′-TCCCTGGAGAAGAGCTACG-3′ and 5′-GTAGTTTCGTGGAT
GCCACA-3′). A single peak was observed in the dissociation curve anal-
ysis for all genes and the sequence of the novel OCT4 PCR product was
confirmed by Sanger sequencing using the same primers. Cycle thresh-
old (Ct) values were determined using Applied Biosystems Sequence
Detection software. Relative quantification was calculated as 2−delta Ct,
where delta Ct values were determined by subtracting the ACTB mean
Ct values from the target gene Ct values.

2.9. OCT4/POU5F1 immunohistochemistry

A tissue microarray (TMA) composed of cores of 102 cases of local-
ized clear cell RCC, 25 cases of advanced/metastatic RCC, 62 cases of
papillary RCC, 50 cases of chromophobe RCC/oncocytic neoplasms and
25 normal kidney controls was preparedwith institutional IRB approval
(study 9138). Twenty randomly selected RCC specimens (5 in each ISUP
grade 1–4) were identified by a third-party honest broker, Northwest
Biotrust at the University of Washington. One TMA section or a single
section from each of the tumor mass and adjacent uninvolved kidney
cortex were subjected to antigen retrieval with HIER ER1 buffer for
20min (ER1=Epitope Retrieval Buffer 1, Citrate basedpH6.0 solution).
Immunohistochemistry for OCT4/POU5F1 was performed using a 1:250
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dilution of the OCT-3/4 (C-10) mouse monoclonal antibody (catalog #
sc5279 from Santa Cruz Biotechnology).

2.10. DNase-seq data

Sequence reads from our DNase-seq libraries were subjected to an
in-house uniform data processing pipeline, which we have used previ-
ously for ENCODE DNase-seq datasets [6]. Briefly, read pairs passing
quality filters are trimmed of adapter sequences and aligned to the ref-
erence human genome (GRCh37/hg19) using BWA [21]. Genomic re-
gions with a significant enrichment of DNase I cleavages were
identified using our hotspot algorithm [6] and were further refined to
fixed-width, 150-base-pair regions (“peaks”) containing the highest
cleavage density (referred to as DNase I hypersensitive sites, DHSs).
Hotspot (FDR 1%) and peak calling were performed using both full-
depth and uniformly sub-sampled (to 3.8 × 107 aligned read pairs)
data. Also see Supplemental Table 1. As indicated for specific analyses,
previously published DNase-seq data (e.g. H1 human embryonic stem
cells) were accessed via the ENCODE data portal.

2.11. HIF ChIP-seq data

Wedownloaded sequence reads fromChIP-seq experiments for HIF-
1α, HIF-2α and HIF-1β [16] from GEO (accession GSE67237), aligned
them to the reference human genome (GRCh37/hg19) using BWA and
identified peak summit locations using the macs2 algorithm [22].

2.12. RNA-seq data

RNA-seq libraries were aligned to the reference human genome
(GRCh37/hg19) using TopHat 2.0.13 [23] and assigned to known tran-
script models (GENCODE v19 basic set) using Cufflinks 2.1.1 [24]. Also
see Supplemental Table 1. Processed RNAseqV2 expression tables
from TCGA Research Network (http://cancergenome.nih.gov/) were
downloaded for frozen tissue samples from organ sites with matched
normal and tumor tissues available for comparison. Patient annotations
(e.g. tumor stage, metastasis status) for TCGA patient samples were ob-
tained using the UCSC Xena browser tool [25]. As indicated for specific
analyses, previously published RNA-seq data (e.g. H1 human embryonic
stem cells) were accessed via the ENCODE data portal.

2.13. General data processing

Data analyses were carried out using custom R scripts that utilized
Bioconductor (http://www.bioconductor.org) packages for analyzing
high-throughput sequencing data, custom Python scripts, and the
BEDOPS [26] suite of tools, as well the publicly available tools GoRILLA
[27], GREAT [28], GENScan [29] and BDGP neural net promoter predic-
tion [30] where indicated.

2.14. Generation of DHS master list

To facilitate comparisons at the same genomic locus across multiple
samples, we created a “master list” of non-overlapping (i.e. non-
redundant) 150 bp DHSs. FDR 1% peak calls from all primary tubule
and RCC 38 million-tag-subsampled datasets were merged by keeping
positions covered by peaks from at least three datasets. Regions where
multiple overlapping peaks produced a large contiguous stretch of
peak coverage were resolved to multiple, non-overlapping 150-bp seg-
ments using a sliding-window approach to find the 150-bp segments of
highest coverage within the larger contiguous region.

2.15. Copy-number correction of DNase data

We utilized the “copynumber” package in R to identify genomic re-
gions likely to be subject to copy-number alterations in our RCC
samples, with the goal of correcting DNase cleavage counts accordingly
so that differences between RCC and TUB samples were more likely to
be driven by changes in TF occupancy than by altered copy number.
Using the log2-normalized fold-change (RCC/TUB) of DNase tag densi-
ties withinmaster list DHSs, we segmented the genomes of all three pa-
tient samples (discontinuity parameter gamma = 140). We classified
regions whose absolute fold-change were at least twice the median as
copy-number variable (Patient 1 = 22 regions, Patient 2 = 26, Patient
3 = 32), and used the mean value of the segment as a scaling factor
for raw DNase read counts in those regions for the RCC samples. This
analysis detected both 3p loss and 5q gain (confirmed by karyotyping
of these patient samples) as well as several focal copy number changes.

2.16. Identification of differential DHSs

We utilized the DESeq2 software package [31] in R to identify DHSs
with significant differences in accessibility between replicate tumor and
normal samples, analyzing each patient separately. Copy-number-
corrected tag counts meeting aminimum threshold in at least one sam-
ple (25)within themaster-list DHSswere used as input for DESeq2, and
sites thatmet an FDR threshold of 1%were considered differential DHSs.

2.17. Calling of HIF1/HIF2 binding sites and identification of HIF-occupied
DHSs

We used macs2 peaks (FDR 1%) from HIF-1α, −1β, and−2α ChIP-
seq performed in 786-O cells to classify HIF1 and HIF2 binding sites
genome-wide. We classified HIF1 binding sites as HIF-1α peaks that
overlapped (by at least 50bp) aHIF-1β peak (1820 sites) andHIF2 bind-
ing sites as HIF-2α peaks that overlapped (by at least 50 bp) a HIF-1β
peak (1243 sites). DHSs in our master list were classified as HIF-
positive if they overlapped a HIF1 or HIF2 binding site by at least
37 bp (25% of DHS width).

2.18. Calculation of gene expression changes and GO term enrichment

Gene expression fold-changes were calculated as the log2 ratio of
FPKM values for RCC/TUB (0.001 was added to each FPKM value to con-
trol for zero values). For each patient, genes with FPKM ≥1 in fold-
change ≥1.5 in RCC were classified as ‘up-regulated’, the converse
criteria were used to classify genes as ‘down-regulated’. All other
genes were classified as ‘non-changing’, except those with FPKM b1 in
both TUB and RCC, which were considered ‘non-expressed’. Shared
(across all three patients) up- or down-regulated gene sets were used
(along with the shared non-changing gene list as a background set) as
input for the GoRILLA gene ontology enrichment tool.

2.19. Comparisons of regulatory landscapes and differential DHSs among
patients

Principal components analysis was performed on log10-transformed
DNase I tag densities within master list DHSs (or on FPKM values for
RNA-seq data) using the “prcomp” function of R (with center = TRUE
and scale = TRUE). Because the master list of DHSs was used to com-
pute differential DHSs for each patient, the DESeq2 calls (FDR 1%) at
each site were used to classify the directionality of change at the same
genomic locations across all three patients.

2.20. Connection of HIF binding sites to neighboring differentially expressed
genes

Wewere interested in which genes might be regulated by HIF bind-
ing events, and considered clusters of HIF+ DHSs as prime candidates
for such connections. To this end, we systematically located clusters of
HIF+DHSs arbitrarilywithin 12.5 kb of one another, merging neighbor-
ing clusters, and examined a 1 Mb region centered on each cluster for

ncbi-geo:GSE67237
http://cancergenome.nih.gov
http://www.bioconductor.org
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genes with altered expression (≥1.5 fold-change) in either our patient
samples or TCGA RNA-seq data.

2.21. Survival analyses

Survival analysis based on POU5F1 expression levels in the legacy
TCGA RNA-seq expression data (split evenly into high- and low-
expressing groups at the median expression level) was performed
using the UCSC Xena web interface [25].

2.22. Uncovering candidate TF drivers of regulatory landscape alterations

Transcription factor motif models were curated from TRANSFAC
(version 11) [32], JASPAR [33], and a SELEX-derived collection [34]. In-
stances of transcription factor recognition sequences in the human ge-
nome were identified by scanning the genome with these motif
models using the FIMO tool [35] from the MEME Suite version 4.6 [36]
with a 5th order Markov model generated from the 36 bp “mappable”
genome used as the background model. Instances with a FIMO P
b 10−4 were retained and used for subsequent analyses.

To obtain a “family-level” representation of TF recognition se-
quences, individual motif models used in the genome-wise FIMO
scans were compared in a pairwise fashion using the TOMTOM [37]
tool from the MEME Suite version 4.6 [36] with the parameters “-dist
kullback -query-pseudo 0.1 -target-pseudo 0.1 -text -min-overlap 0
-thresh 1” and the same 5th order Markov model described above as
background. Pairwise comparisons were then hierarchically clustered
using Pearson correlation as a distance metric and complete linkage.
The resulting trees were cut at a height of 0.1 to select clusters of highly
similar motifs.

Motif enrichments were calculated by using a custom Python script
to count the number of DHSs that contain a “family” motif (i.e.
contained an instance of anymotifmodel within a cluster of highly sim-
ilarmotifmodels). For a given analysis, these countswere compared be-
tween a “foreground” set of DHSs (e.g. shared DHSs with increased
accessibility in RCC) and a “background” set (e.g. all other DHSs) and
significance was determined using the hypergeometric distribution
and subsequent Bonferroni correction of p-values.

Because motif enrichment was computed using family-level repre-
sentations of TF recognition sequences, we aimed to uncover which
member(s) of the POU family might be driving changes in the regula-
tory landscape of RCC by examining our and TCGA's RNA-seq data for
all members of the POU family with a significant enrichment signal.

2.23. Enrichment of repetitive elements in HIF-occupied DHSs

The RepeatMasker annotation of the reference human genome
(GRCh37/hg19) was downloaded from the UCSC Genome Browser
and compared to our annotations of HIF+ DHSs. We classified a repeat
element as coinciding with a DHS (HIF+ or otherwise) if they over-
lapped by at least 37 bp (25% of DHS width). To calculate enrichments
of HIF sites at particular repetitive elements, we calculated frequency
of overlap between each repeat family and HIF+ DHSs. A background
distribution of expected overlapswas generated by permuting the iden-
tity of HIF+ DHSs within our master list of DHSs and repeating the fre-
quency calculation five hundred times (this controlled for any bias of
DHSs in general to coincide with particular repeat families). We calcu-
lated empirical p-values using a two-sided t-test and the Benjamini-
Hochberg correction for multiple testing.

2.24. Assessment of promoter-like behavior at HIF-bound LTR elements

To determine whether HIF-bound LTR elements generally acted as
novel promoters, we assessed the strand-specific transcription signal
emanating from these elements in each patient. A 1 kb window down-
stream of each HIF+ LTR element (each LTR has a directionality) was
used to count RNA-seq reads in both tubule (TUB) and tumor (RCC)
samples mapping to both the positive and negative DNA strands. We
then calculated the log2 fold-change (RCC/TUB) for each patient and
clustered the data in a heatmap. We identified transcriptional activity
at these HIF+ LTRs if they produced RNA transcripts in the same direc-
tion as the LTR element (i.e. transcripts induced only on the plus strand,
not on the opposite strand, for a plus-strand-oriented LTR element).We
also identified the nearest differentially expressed gene in our samples
for each HIF+ LTR using the GENCODE v19 Basic annotation set.

2.25. Data availability

All primary anduniformly processed sequence data generated in this
study are available at the NCBI Gene Expression Omnibus (GEO; http://
www.ncbi.nlm.nih.gov/geo/) under accession number GSE117324. We
recently performed a separate and non-overlapping analysis of the tu-
bule data sets included in this study in comparison tohumankidney glo-
merular outgrowth cultures and cultured podocytes [38]. Those data
have also been deposited at GEO with accession number GSE115961.

3. Results

3.1. RCC regulatory landscapes are highly concordant across individual
tumors

Using RCC as a model system, we first sought to reduce or eliminate
the contribution of non-relevant cell types by generating primary cul-
tures of RCC and proximal tubules (cell of origin for RCC) from three pa-
tients. In culture, tumor cells were large, grew slowly and frequently
contained intracellular vacuoles, typical of adenocarcinoma. In contrast,
proximal tubule cells were epithelioid in morphology and grew rapidly
(Fig. 1A). Previous work has demonstrated that primary RCC cultures
preserve the cytogenetic profile of their originating tumor [12]. In line
with this, we found that the primary tumor cultures revealed character-
istic karyotype abnormalities associatedwith RCC: all three patients' tu-
mors carried a loss of the short arm of chromosome 3 (chr3p-) and a
gain of the long arm of chromosome 5 (chr5q+) (Fig. 1B and Supple-
mental Fig. 1A). The VHL gene is located on chr3p, and Sanger sequenc-
ing of the remaining allele identified inactivatingmissensemutations in
all three tumor samples (Supplemental Fig. 1B). Taken together with
the loss of heterozygosity on chromosome 3p, this indicated that all
three patients' tumors were VHL-null, typical of themajority of sporadic
RCC [15].

Next, we generated high-quality DNase-seq datasets in duplicate
from each patient's primary RCC and tubule cultures. Windowed aggre-
gation of DNase-seq tags again corroborated chromosome arm-level
gains and losses delineated by conventional karyotyping (Supplemental
Fig. 1C). Globally, accessible chromatin regions appear as DNase-
hypersensitive sites (DHSs, called at FDR 1%) andmost of these were lo-
cated N5 kilobases (kb) from known transcription start sites, a feature
typical of distal regulatory elements such as enhancers (Supplemental
Fig. 1D). In parallel, we generated gene expression profiles (RNA-seq)
from these cultures and compared them to TCGA RNA-seq data gener-
ated from 72 normal kidney tissues and 534 RCC specimens [15]. Lastly,
we cross-referenced our DNase-seq and RNA-seq datasets with publicly
available ChIP-seq data for HIF components (HIF1α, HIF2α, HIF1β) from
the VHL-null 786-O RCC cell line [16]. As an example of such compari-
son, STC2, a well-known HIF-induced target gene [39], had several dif-
ferentially accessible DHSs near its promoter in the RCC samples
which correlated with increased STC2 gene expression in our own
data and in the larger TCGA data set (Fig. 1C). Some of the induced
DHSs near the STC2promoter overlappedHIF ChIP-seq peaks, consistent
with HIF binding at these regulatory elements. However, other induced
DHSs do not appear to be bound byHIF, implicating a role for other tran-
scription factors (TFs) in opening nuclear chromatin at these sites.

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
ncbi-geo:GSE115961
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Genome-wide chromatin accessibility patterns define the regulatory
landscape of each primary patient sample. Globally, the regulatory land-
scapes of the primary tubule cultures showed substantial overlap
among the three patients (Fig. 2A). In contrast, while each tumor spec-
imen retained a proportion of DHSs from its tubule of origin, the re-
mainder of its landscape was composed of de novo DHSs. A
proportion of these de novo DHSs was shared among the tumor sam-
ples, and together with the tubule-derived DHSs retained in the tumors,
they defined the shared regulatory landscape of RCC. The similarity of
the tubule regulatory landscapeswas also evident in the tight clustering
of these samples in principal component analysis whereas the RCC sam-
ples (and the 786-O RCC cell line) localized to distinct positions in the
regulatory space (Fig. 2B).

After obtaining a global picture of regulatory landscape similarities
based on presence or absence of individual DHS peak calls, we identified
accessibility changes between each patient's normal and tumor cells at a
common set of DHSs, and then compared the behavior of those differen-
tially accessible sites across the three patients. This analysis identified
between 24,976–61,072 differential DHSs (dDHSs, FDR 1%; see
Methods) in each patient (roughly equally split between sites with in-
creased and decreased accessibility in tumor cells), representing
~8–20% of all sites examined (Supplemental Fig. 1E). At least 35% of
these dDHSs were shared by at least 2 patients. Most strikingly, we
found that 93.6–98.5% of dDHSs shared between any two patients
displayed highly concordant directional accessibility changes in the
tumor samples (Fig. 2C). In total, we identified 6080 dDHSs with con-
cordant accessibility changes across all three patients.

The above results show that primary cultures of proximal tubules
and RCC can be generated at high purity and provide an ideal platform
for functional genomic methodologies. While the regulatory landscape
of each patient's tumor cells was in part unique, the shared DHSs
showed highly convergent accessibility changes across all three patients
and therefore defined the core regulatory program of RCC.

3.2. Convergent gene expression landscapes

Examinationof gene expression profiles for genes changingby N1.5×
in all three patient samples revealed consistently increased expression
of RCC-associated genes (including VEGFA, CA9, EGLN3, etc.) in tumor
cultures with concomitant downregulation of normal tubule-
associated transcripts (e.g. CDH1, ANPEP) (Supplemental Fig. 2A).
Some tubule-derived genes did not change significantly in the RCC sam-
ples (e.g.MME). For subsequent analyses, we chose to anchor on genes
thatwere expressed in our primary tumor cultures since the TCGARNA-
seq dataset is derived fromwhole kidney and tumor tissue and contains
transcripts derived from non-tumor and non-tubule cell types (e.g. cir-
culating immune cells, stromal cells, endothelial cells). Of genes that
were expressed at a minimum threshold (FPKM≥1) in our samples,
1072 genes were upregulated and 1207 genes were downregulated
across all three patient tumor samples compared to their respective tu-
bule controls. Gene ontology analysis identified pathways characteristi-
cally dysregulated in RCC, such as genes related to the hypoxic response
(e.g. VEGFA), organic ion transport (e.g. CA9) and lipid metabolism (e.g.
FABP6), whichwere enriched in the upregulated gene set. Genes related
to cell cycle regulation (e.g. AURKA, TOP2B) and chromatin organization
(e.g. HMGA1) were consistently transcriptionally downregulated (Sup-
plemental Fig. 2B). Thus, the gene expression landscapes of our primary
cultures were largely concordant across patient samples and recapitu-
lated the key transcriptional signatures of RCC.

3.3. Concordant tumor regulatory landscapes expose transcription factor
drivers of RCC

Chromatin accessibility profiling methodologies such as DNase-seq
uniquely provide insight into the transcription factor drivers of onco-
genesis [1]. Since HIF is canonically dysregulated in RCC, we next
explored its role and that of other transcription factors (TFs) in driving
the chromatin accessibility changeswe observed in the regulatory land-
scapes of the patients' tumor samples. Even though most (N93%) HIF
binding sites coincided with DHSs, ~70% of these DHSs showed no sig-
nificant change in accessibility between tubule and RCC (Fig. 3A).
Even the HIF-bound DHSs that showed significant accessibility changes
in one tumor-normal pair often did not show differential DHS accessi-
bility in the other patient samples (Fig. 3B). This suggested that HIF
alone does not broadly reprogram the regulatory landscape of RCC,
but did not exclude the possibility that it may regulate other TFs that
contribute to the process of malignant transformation. 213/776 of the
TFs that were upregulated (≥1.5×) in at least one patient RCC-tubule
pair had a HIF-occupied DHS within 250 kb of their transcription start
site (TSS) (Fig. 3C). A subset of these 213 TFs showed evidence of selec-
tive transcriptional induction in RCC compared to multiple somatic tu-
mors for which matched normal tissues were available for comparison
in the TCGA expression data (Fig. 3D). We rationalized that since the
majority of RCC samples exhibit HIF activation, the TF gene subset that
was consistently induced in the TCGA data is more likely to contain
TFs truly subject to HIF regulation in RCC. The fact that only a subset
of the putative HIF-regulated TFs in our primary culture system showed
selective expression in the TCGA RCC RNA-seq datamay reflect the con-
taminating effect of non-tumor cell types in TCGA samples that can ob-
scure small changes in transcription factor genes that are typically
expressed at low levels.

To uncover the identities of the TFs that are likely to be driving the
regulatory program of RCC, we determined the relative enrichment of
TF recognition sequences within the shared set of differential DHSs
(discussed above) compared to a background of static DHSs. AP-1, ETS
and E-box family recognition sequences were significantly enriched in
DHSs with decreased accessibility in RCC (Fig. 4A). Motifs for basic
helix-loop-helix (bHLH) family transcription factors (which include
MYC, HIF and BHLHE41) were enriched in DHSs that do not change
their accessibility in RCC, i.e. they remain constitutively accessible in
both tubule and RCC samples. Recognition sequences for several TF fam-
ilies (including homeodomain, nuclear receptor and HNF1/POU) were
enriched in DHSs with increased accessibility in RCC.

Since several TF family members can recognize the same DNA bind-
ing recognition sequence, we next asked if the differential TF gene ex-
pression levels between tubules and RCC could help identify the
specific family members that were contributing to the observed motif
enrichment in the regulatory landscape. This analysis revealed that for
the POU family transcription factors, only the stem cell related factor
POU5F1 (also known as OCT4) was consistently expressed and upregu-
lated in RCC compared to tubules (Fig. 4B). POU5F1 and some of the
transcription factors which are associated with genetic risk for RCC
and whose binding sequences were enriched in differentially accessible
DHSs (e.g. BHLHE41) showed evidence of regulation by HIF (Fig. 3C).
POU5F1 is normally expressed only in stem cells and germ cell-derived
tumors but in the larger TCGA data set, it showed strikingly selective in-
duction in RCC and papillary kidney cancer (both derived fromproximal
tubule cells) compared to normal kidney tissue (Fig. 4C). Other known
cellular reprogramming transcription factor genes, namely SOX2, KLF4
and NANOG, were not induced in RCC (data not shown).

Taken together, these results suggest that instead of driving large-
scale changes in chromatin accessibility by itself, HIF may have a
broader impact on the regulatory landscape of RCC by activating the ex-
pression of other transcription factors. We sought to corroborate this
notion by closer examination of the role of HIF in the regulation of
POU5F1.

3.4. Expression of a novel POU5F1 transcript in RCC from an alternate adult
human- and kidney-specific promoter

Close examination of the chromatin accessibility and RNA-seq
data from our three patients revealed a stretch of RNA
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transcription starting from a bipartite DHS at 5′-end of the long
non-coding RNA (lncRNA) gene PSORS1C3. These transcripts ap-
peared to read through the PSORS1C3 gene and into the annotated
POU5F1 transcript isoforms which lie on the same strand (Fig. 5).
Like POU5F1, the PSORS1C3 gene is also selectively upregulated in
the TCGA RCC data (Supplemental Fig. 3). These transcripts were
also present in 786-O cells but were not detected in H1 human em-
bryonic stem cells (hESCs). The initiation of these transcripts lay
within a DHS ~16 kb upstream of the POU5F1 TSS, which was dis-
tinct from the well-characterized distal and proximal enhancers
that regulate POU5F1 in hESCs [40]. Curiously, this DHS was only
present in adult kidney tubule- and RCC-derived cells/cell lines
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and was not detected in hESCs, fetal kidney tissues or many other
diverse cell types (Supplemental Fig. 4).

FANTOM5 data suggested that this DHS acts as a promoter in the
kidney: it coincided with a peak in the human renal epithelium (HRE)
ChIP-seq signal for H3K4me3, whichmarks active promoters and lacked
an H3K27me3 peak, a repressive chromatin mark. In 786-O cells, this
DHS demarcated H3K36me3 signal, a mark associated with transcrip-
tion elongation, the other end of which extended into annotated
POU5F1 transcripts [41,42]. The GeneLoc algorithm, which integrates
data from FANTOM, ENCODE, ENSEMBL and VISTA databases [43], also
annotated this DHS as a potential promoter/enhancer (Genehancer ID:
GH06J031185). A neural-network based eukaryotic promoter predic-
tion algorithm [30] also identified a potential promoter within this
DHS. Both of these lines of evidence are consistent with this DHS' loca-
tion at the TSS of actively transcribed PSORS1C3 gene (Fig. 5). The
PSORS1C3 gene is known to have numerous splice isoforms [47] and
numerous expressed sequence tags (ESTs) are present at the POU5F1-
PSORS1C3 locus (Supplemental Fig. 5). Still, given the presence of
RNA-seq reads in the genomic interval between PSORS1C3 and POU5F1
(green shaded box, Fig. 5) and the fact that read through transcription
is frequently seen in RCC [44], we sought to determine whether novel
transcripts of POU5F1 were generated from the DHS 16 kb upstream of
its canonical TSS in RCC. Knowing that the expression of POU5F1 may
be confounded by that of its pseudogene, POU5F1B [45,46], we first ex-
amined chromatin accessibility and gene expression at the POU5F1B
pseudogene locus in our samples, and did not detect significant
amounts of either (Supplemental Fig. 6).

We then proceeded to unambiguously determine if the putative al-
ternate promoter initiated transcription of a novel POU5F1 isoform. To
do this, we performed 5’-RACE on cDNA isolated from the VHL-null
786-O RCC cell line and sequenced the resulting products (Fig. 6A).
This captured a new transcription start site for POU5F1 originating



Fig. 5.Anovel human-specific promoter initiates longRNA transcripts through the PSORS1C3-POU5F1 locus in RCC.Overview of the POU5F1-PSORS1C3 genomic locus (hg19 chr6:31,125,253-
31,156,354). RNA-seq tracks for the primary patient samples and the RCC cell line 786-O revealed a novel transcript originating from a DHS ~16 kb upstream of the known human
embryonic stem cell (hESC) TSS. This transcript reads through the PSORS1C3 lncRNA gene into the POU5F1 gene body (green shaded box). ChIP-seq in 786-O cells revealed binding of
HIF components (HIF1α, HIF2α, HIF1β) to this DHS with evidence of histone modification typical of active transcription across the entire transcript (H3K36Me3). This DHS was also
associated with histone modifications characteristic of an active promoter in human renal epithelial cells (HRE), i.e. positioned nucleosomes marked by H3K4Me3 and depletion of the
repressive H3K27Me3 mark. Examination of sequence conservation showed that this alternate promoter lies within a complex tandem long terminal repeat (LTR) element that is
unique to humans (blue shaded box). CRG, Center for Genomic Regulation.
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within the specifiedDHS (Fig. 5). Several exon-exon combinationswere
observed in the 5-RACE reaction product suggesting a complex mixture
of isoforms expressed in 786-O cells. Curiously, these putative isoforms
were also distinct from the GENScan prediction [29] for exon-intron
junctions for the long transcript (Fig. 5) and from the OCT4C/OCT4C1
variants (GenBank AB971680, AB971681) that have been recently de-
scribed [47] (Supplemental Fig. 5). The closest match to this isoform's
structure is the expressed sequence tag (EST) KY781167 (Fig. 6A), re-
cently identified in breast cancer [48].

Critically, the DHS located -16 kb upstream of the canonical
POU5F1 TSS contained HIF binding motifs which coincided with
strong HIF1α and HIF2α ChIP-seq signal in the 786-O cell line,
suggesting that HIF is bound to this promoter element in RCC. We
note that this HIF site is encoded by long-terminal repeat (LTR) ele-
ments of the Harlequin-int and LTR2B subfamilies of ERV1 endoge-
nous retroviruses. This repeat configuration appeared to represent
an evolutionarily recent insertion into the human genome as it was
not conserved among higher primates or other mammals (Fig. 5).
Good alignability [49] at this composite LTR reduced the possibility
that degeneracy of viral repeat elements was confounding locus-
specific mapping of short-read sequences.

Finally, we asked if the canonical and novel isoforms of POU5F1 ex-
hibited dependence on VHL protein (stably reintroduced into the 786-
O cell line) and/or hypoxia using isoform specific RT-PCR primers
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(Fig. 6A). Reintroduction of VHL protein into 786-O cells cultured in
normoxia strongly suppressed expression of both canonical and novel
POU5F1 transcripts (Fig. 6B). The presence of VHL protein also resulted
in significant induction of canonical and novel POU5F1 transcripts
when the 786-O + VHL cells were cultured in hypoxia (Fig. 6B). These
transcripts did not change appreciably when 786-O cells (stably trans-
duced with empty vector as a control, 786-O + EV) were shifted from
normoxia to hypoxia, consistent with already maximal HIF-signaling
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in this VHL-null cell line. Taken together, these results established the
presence of a kidney-specific promoter element that originated at this
site by insertion of transcriptionally active endogenous retrovirus ele-
ments specific to the human lineage. This alternate promoter produces
a novel transcript isoform of POU5F1 in RCC by read through transcrip-
tion of the PSORS1C3 lncRNA gene.

3.5. POU5F1 transcript levels in RCC correlate with overall survival

Next, we sought to evaluate if increased POU5F1 transcription led to
increased protein levels in human RCC specimens. The novel transcript
identified by 5′-RACE did not contain a translation initiation codon and
consistent with this, OCT4 protein was not readily detectable in 786-O
cells by immunoblotting or mass spectrometry (not shown). However,
this did not exclude thepossibility that increased transcriptional activity
from the alternate promoter could permit expression of canonical OCT4
protein in a subset of cells that in turn was responsible for the
population-level POU-family motif enrichment seen in DHSs with in-
creased accessibility in RCC. We decided to test this possibility on
human RCC specimens using an antibody recognizing a C-terminal epi-
tope of POU5F1 (OCT4) that is expected to be represented in all of the
known isoforms of POU5F1. Initial experiments using a tissue microar-
raywith 102 cases of localized RCC and 25 cases of advanced stage/met-
astatic RCC did not reveal significant POU5F1 (OCT4) expression in the
tumor cells (data not shown). However, since the tissue cores for each
individual tumor in the array are very small andmay not be representa-
tive of the often large and heterogeneous RCC tumors [50,51], we de-
cided to test POU5F1 (OCT4) expression in larger tissue sections from
20different patient tumors alongside theirmatched normal kidney con-
trols. In 4 out of 20 RCC tissue sections, patchy nuclear POU5F1 (OCT4)
protein expression was readily detectable (Chi-squared p-value =
0.035, Fig. 6C). We did not observe POU5F1 (OCT4) expression in any
of the normal kidney tissue sections examined. Therefore, even though
POU5F1 transcript induction appears to be a consistent feature of RCC
(Fig. 4C), POU5F1 (OCT4) protein is inconsistently detected, which
may reflect focal or patchy expression in these large tumors. Lastly,
we examined POU5F1 expression in the TCGA data set as a function of
clinical staging parameters. The expression of POU5F1 did not correlate
withmetastasis status (Supplemental Fig. 7A), but was positively corre-
lated with pathologic tumor stage, with higher stage tumors exhibiting
greater expression of POU5F1 (Supplemental Fig. 7B). Strikingly, pa-
tients with high expression of POU5F1 exhibited lower overall survival
compared to patients with lower expression levels (Fig. 6D). Interest-
ingly, PSORS1C3 transcript levels were not correlated with overall sur-
vival (not shown). These results demonstrate that POU5F1 (OCT4)
protein can be expressed in a patchy fashion in RCC tumors and that
POU5F1 expression levels predict overall survival in patients with RCC.

3.6. Generalized HIF-driven exaptation of LTRs in RCC

We next asked whether HIF binding of specific repetitive elements
was a generalized phenomenon, and found that 178 out of the 2200
(8.1%) HIF-bound DHS overlapped an LTR element. Approximately
50% of these (90/178) were DHS that exhibited differential chromatin
Fig. 7. Activation of cryptic LTR-derived promoters in RCC. (a) Enrichment of HIF-bound DHS in L
DHSs. Of these, the LTR2B subfamily shows the greatest number ofHIF-boundDHSs (n=34). (b
The ends of the bar plots represent the 25th and 75th quartiles with whiskers representing 1.5×
are significant (p b 1 × 10−10) by one-tailed t-test. (c)HIF-bound DHSs in LTRs show strand-speci
seq reads up to 1 kb on either the same or opposite strand of the LTR identifies elements with
tubules with the same directional orientation as the LTR). The heatmap represents the ratio of t
transcriptionally active and is associated with increased expression of the UBE2D2 gene. Similar to
tivity drive the expression of novel transcripts and increase the expression of nearby genes. Sho
pared to its matched tubule control. (e) HIF-bound LTR-induced genes exhibit HIF-dependenc
transduced with VHL (786-O + VHL) or empty vector (786-O + EV) cultured in normoxia or
using the β-actin housekeeping gene (ACTB). N.B. expression scale differences between the can
replicates. *p b 0.05, ***p b 0.005, N.S. not significant (two-tailed t-test).
accessibility between the tubule andRCC samples consistentwith active
regulation at these sites. This specific localization to LTRswas significant
for HIF-bound DHSs in ERV1 and ERVK LTR families (empirical P b 0.01),
particularly with LTR2/2B and Harlequin-int type elements (Fig. 7A).
We posited that HIF binding to LTRs might exapt their regulatory do-
mains to influence the gene expression landscape of RCC. This could
occur either with the HIF-bound LTRs acting as enhancers or as direct
transcriptional activators/alternate promoters as we had observed for
the PSORS1C3-POU5F1 locus. Investigating the first possibility, we
found that of the 178HIF-bound LTRs, 29 arewithin 250 kb of a gene in-
duced ≥1.5× in the TCGA RNA-seq data (same criteria as used for Fig. 3)
suggesting that HIF-bound LTRsmay be influencing the gene expression
program of RCC. This set of genes included ANXA4 [52], ENPP3 [53], and
CD70 [54] that are invariably induced in RCC (Fig. 7B). To explore the
second possibility, we tallied transcript production 1 kb downstream
of HIF-bound LTRs as read counts on both the plus and minus DNA
strands (Supplemental Table 2). We identified 72 transcriptionally ac-
tive HIF-bound LTRs defined by transcript production (≥20 read counts)
in at least one of our samples and strand-selective transcriptional induc-
tion (i.e. promoter-like activity) wasmost prominent for the ERV1 class
(Fig. 7C). Some of these appeared to act as alternate promoters associ-
ated with upregulation of nearby genes such as for UBE2D2 (Fig. 7D).
Similar to the alternate POU5F1 promoter, theUBE2D2 exapted LTR pro-
moter had a tandem LTR2-Harlequin-int substructure. We next decided
to test if some of these HIF-LTRs retained intact VHL-HIF axis respon-
siveness. We extracted RNA from 786-O empty vector or VHL-
transduced cells exposed to normoxia or hypoxia (2% O2) as before.
We tested the expression of two genes in which HIF-bound LTRs
might act as enhancers (ANXA4, ENPP3) and one gene in which the
HIF-bound LTRs might act as a direct transcriptional activator/alternate
promoter (UBE2D2). Expression levels of these three genes were sup-
pressed when VHL protein was reintroduced into VHL-deficient 786-O
cells, consistent with a HIF-dependent mechanism of regulation
(Fig. 7E). Taken together, these results suggest that in RCC, HIF stabiliza-
tion and binding to regulatory elements embeddedwithin LTR elements
exapts latent regulatory elements that can act as promoters or en-
hancers of gene expression.

4. Discussion

Even for a well-studied tumor such as RCC, there is a notable deficit
in the understanding of genome dysregulation that drives oncogenesis.
Here we demonstrate that while each patient's tumor can exhibit its
own unique epigenomic signature, subtraction of the genotype-
matched cell-of-origin baseline and comparison across individuals can
robustly identify the core regulatory landscape of cancer. Using high-
resolution epigenomic mapping on primary tumors and matched nor-
mal cells from three patients, we identified multiple transcription fac-
tors with differential expression patterns and significant DNA binding
motif enrichments that likely contribute to the tumor phenotype. Tran-
scription factors that drive genome dysregulation in RCC have hitherto
only been explored in piecemeal fashion. Besides the HIFs, other
sequence-specific factors have been implicated individually in various
aspects of RCC biology including PAX2 [55–58], PAX8 [59–61], CEBPβ
TR families. The ERV1 and ERVK families of LTR show significant enrichment for HIF-bound
) TCGA expression of selected genes putatively induced byHIF-bound cryptic promoters in LTRs.
inter-quartile range (10% outlier trim applied for clarity). All tumor-normal comparisons

fic induction of RNA transcripts. Since LTRs are intrinsically directional, enumeration of RNA-
HIF-dependent promoter-like activity (increased transcripts in RCC samples compared to
he RCC/tubule read counts for each patient on the indicated strand. (d) A HIF-bound LTR is
the alternate POU5F1 promoter, some of the HIF-bound LTRs that show promoter-like ac-
wn is the expression of UBE2D2 transcripts, which increases 1.76× in Patient 1's RCC com-
e. RT-PCR primers were used to quantify the indicated transcripts in 786-O cells stably
hypoxia (2% O2) for 24 h. Expression levels (relative quantification, RQ) were calculated
onical and novel transcripts. Error bars indicate standard deviations of three experimental
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[62], NRF2 [63,64], FOXO [65–67], STAT3 [68–74], FOXM1 [75,76],
POU5F1 (OCT4) [77,78], P53 [79–82], TCF21 [83,84], HCF1 [85], HNF1/
2 [86–88] and most recently BHLHE41 [89,90] and ZNF395 [91,92].
Here, we show that many of these transcription factors may in fact be
regulated by HIF and influence the regulatory landscape in RCC.

One transcription factor that is frequently upregulated in RCC is the
stem cell factor POU5F1, and we found that its DNA recognition se-
quence is enriched in the open chromatin regions of RCC. Our examina-
tion of the POU5F1 genomic locus identified an adult kidney-selective
and hypoxia/HIF-responsive promoter that produces a novel transcript
isoform for POU5F1 in RCC. This promoter is embedded in an endoge-
nous retroviral LTR element appears to induce POU5F1 by read through
transcription of the long non-coding RNA gene PSORS1C3, a phenome-
non that is pervasive in RCC [44]. Hypoxia is a known stimulant of
POU5F1 expression in embryonic stem and cancer cells [93–96] and
can even reprogram committed cells into a pluripotent state [97,98].
Given theuniquekidney-specific activity of theLTR-embeddedalternate
promoter and the fact that VHL inactivation and constitutive HIF stabili-
zation appear to be early events in sporadic RCC [99,100], future studies
should focus on determining how VHL inactivation and/or hypoxia con-
tribute to the regulation of POU5F1 expression in kidney tubule cells and
RCC from both the canonical and LTR-embedded alternate promoters.

The novel POU5F1 transcript that we identified does not appear to
contain a translation initiation codon. Perhaps due to this, we found
that only a subset of cells in patients' tumors appear to produce
POU5F1 (OCT4) protein. However, the expression of this potent tran-
scription factor in even a subset of cancer cells may still be clinically rel-
evant as this population may represent self-renewing RCC cancer stem
cells [76]. Consistent with this idea, we found that higher POU5F1 tran-
script levels in RCC are associatedwith poor patient survival in the TCGA
data set. Activation of stem cell-like epigenetic and transcriptional pro-
grams are associated with malignant transformation, though clear cell
RCC appears to behave differently than other tumor types [101]. Our
work suggests that further investigation of the role of POU5F1 in RCC
tumor cells at single cell resolution [102], and especially in patients
with advanced stage tumors, will shed light on the role of this transcrip-
tion factor on the regulatory landscape and biology of this tumor.

Our analysis of the PSORS1C3-POU5F1 locus led us to uncover a
broader epigenetic mechanism influencing the gene expression pro-
gram in RCC. Rather than being unique to PSORS1C3-POU5F1, we
found that in fact, several retroviral LTR elements are bound by HIF
and exhibit an accessible chromatin profile in our samples. Some of
these HIF-bound LTRsmay function as distal enhancers inducing the ex-
pression of genes that are important therapeutic targets in RCC such as
ENPP3 and CD70 [53,103,104].Many of these genes also show transcrip-
tional upregulation in the TCGA dataset and at the protein level in mass
spectrometry-based profiling of RCC [105]. Other HIF-bound LTRs ex-
hibit strand-specific promoter-like activity that may induce the expres-
sion of neighboring genes (e.g. UBE2D2, an E2-ubiquitin ligase, whose
downstream substrates include P53 [106,107]) in a manner analogous
to POU5F1. Repeat elements such as LTRs are enriched in primate-
specific regulatory elements [108] and are known to influence tran-
scription factor regulatory networks [109]. Exaptation of promoters em-
beddedwithin LTRs is emerging as an importantmechanism of genomic
dysregulation during oncogenesis [110]. This phenomenon was first
shown for expression of CSF1R [111] and IRF5 [112] in Hodgkin lym-
phoma. Activation of LTR-embedded promoters has also been linked
to production of novel gene isoforms such as for ALK in melanoma
[113] and FABP7 in diffuse large B cell lymphoma [114]. To our knowl-
edge, this report represents the first description of retroviral LTR exap-
tation in RCC and the mechanism appears to be distinct from previous
examples of this phenomenon. Since HIF activation is one of the earliest
steps in RCC oncogenesis [99], it is likely that unmasking of HIF-
responsive LTRs and exaptation of their potent regulatory elements
influences the expression landscape of the tumor, most notably by up-
regulation of POU5F1.
The data generated and described here are freely available to pro-
vide a reference map upon which future functional genomic studies
on RCC can be constructed and interpreted. Overall, our approach dem-
onstrates the power of epigenomic analysis focused on small numbers
of pure primary tumor and matched normal cell-of-origin cultures
which can provide a clarifying lens through which to interpret inher-
ently noisier large tumor-sequencing datasets. This general framework
can reveal unanticipated insights into tumor biology and is readily ap-
plicable to other cancers in which tumor cells and matched normal
cells-of-origin are available.
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