Our lab develops and applies single molecule biophysical methods to directly capture nanoscale events in biological processes such as protein folding/unfolding and biomolecular interactions, and explore the underlying molecular mechanisms in order to unveil the origin of disease. We also use human pluripotent stem cells to re-create key features of human vascular disease, such as thrombosis and bleeding disorders. Combining single-molecule manipulation tools, microfluidics, and stem cell biology, we are building a molecule-to-tissue scale model of human disease and aim to develop novel interventions, including both molecular and cellular therapies.