Alessandro Bertero, PhD (Pathology)
Our mission is dual: (1) to elucidate the gene regulatory mechanisms underpinning cardiac development and disease; and (2) to leverage this knowledge to develop gene, cell, and tissue engineering strategies for cardiac therapeutics. The current focus of genomic studies is the role of three-dimensional chromatin organization in dilated cardiomyopathy and congenital heart disease. Engineering efforts are now concentrated on the generation of genetically modified human pluripotent stem cell-derived cardiomyocytes to improve to improve production scalability, safety, and efficacy for cardiac regenerative medicine applications.

Cole A. DeForest, PhD (Chemical Engineering)
While the potential for biomaterial-based strategies to improve and extend the quality of human health through tissue regeneration and the treatment of disease continues to grow, the majority of current strategies rely on outdated technology initially developed and optimized for starkly different applications. Therefore, the DeForest Group seeks to integrate the governing principles of rational design with fundamental concepts from material science, synthetic chemistry, and stem cell biology to conceptualize, create, and exploit next-generation materials to address a variety of health-related problems. We are currently interested in the development of new classes of user-programmable hydrogels whose biochemical and biophysical properties can be tuned in time and space over a variety of scales. Our work relies heavily on the utilization of cytocompatible bioorthogonal chemistries, several of which can be initiated with light and thereby confined to specific sub-volumes of a sample. By recapitulating the dynamic nature of the native tissue through 4D control of the material properties, these synthetic environments are utilized to probe and better understand basic cell function as well as to engineer complex heterogeneous tissue.

Benjamin Freedman, PhD (Medicine/Nephrology)
Our laboratory has developed techniques to efficiently differentiate hPSCs into kidney organoids in a reproducible, multi-well format – a prototype ‘kidney-in-a-dish’. In addition, we have generated hPSC lines carrying naturally occurring or engineered mutations relevant to human kidney diseases, such as polycystic kidney disease and nephrotic syndrome. The goal of our research is to use these new tools to model human kidney disease and identify therapeutic approaches, including kidney regeneration.

Cecilia Giachelli, PhD (Bioengineering)
My lab is interested in applying stem cell and regenerative medicine strategies to the areas of ectopic calcification, tissue engineering, biomaterials development and biocompatibility.

Ray Monnat, PhD (Pathology and Genome Sciences)
Our research focuses on human RecQ helicase deficiency syndromes such as Werner syndrome; high resolution analyses of DNA replication dynamics; and the engineering of homing endonucleases for targeted gene modification or repair in human and other animal cells.

Buddy Ratner, PhD (Bioengineering)
Stem cells proliferate and differentiate in response to micromechanical cues, surface biological signals, orientational directives and chemical gradients. To control stem cell proliferation and differentiation, the Ratner lab brings 30 years experience in surface control of biology, polymer scaffold fabrication and controlled release of bioactive agents to address the challenges of directing stem cell differentiation and subsequent tissue formation.

Michael Regnier, PhD (Bioengineering)
The Regnier lab works in a highly collaborative environment to develop both cell replacement and gene therapies approaches to treat diseased and failing hearts and skeletal muscle. Cell replacement strategies include development and testing of tissue engineered constructs. Gene therapies are target and improve myofilament contractile protein function.

Mehmet Sarikaya, PhD (Materials Science and Engineering)
Our research focuses on Molecular Biomimetics in which we use combinatorial mutagenesis to select peptides with specific affinity to desired materials, use bioinformatics-based pathways to in-silico design peptides, tailor their structure and function using genetic engineering protocols, couple them with synthetic self-assembled molecular hybrids, and use them as molecular tools in practical medicine and materials technologies. Our focus at the biology/materials interface incorporates molecular biology and nanotechnology, computational biology and bioinformatics, molecular assemblers, bio-enabled nanophotonics (quantum-dot and surface-enhanced probes), and peptide-based matrices for neural, dental and soft tissue regeneration.

Drew L. Sellers, PhD (Bioengineering)
Despite possessing a resident pool of neural stem cells, the mammalian brain and spinal cord shows a limited ability to regenerate damaged tissue after traumatic injury.  Instead, injury initiates a cascade of events that direct reactive gliosis to wall off an injury with a glial scar to mitigate damage and preserve function. My current research interests explore approaches to re-engineer the stem cell niche, to utilize gene-therapy and genome editing approaches to reprogram and engineer stem cells directly, and to enhance drug delivery into the central nervous system (CNS) to drive regenerative strategies that augment functional recovery in the diseased or traumatically injured CNS.

Nathan Sniadecki, PhD (Mechanical Engineering)
Our mission is to understand how mechanics affects human biology and disease at the cellular level. If we can formulate how cells are guided by mechanics, then we can direct cellular response in order to engineer cells and tissue for medical applications. We specialize in the design and development of micro- and nano-tools, which allows us to probe the role of cell mechanics at a length scale appropriate to the size of cells and their proteins.

Kelly R. Stevens, PhD (Bioengineering and Pathology)
Our research is focused on developing new technologies to assemble synthetic human tissues from stem cells, and to remotely control these tissues after implantation in a patient. To do this, we use diverse tools from stem cell biology, tissue engineering, synthetic biology, microfabrication, and bioprinting. We seek to translate our work into new regenerative therapies for patients with heart and liver disease.

Thomas N. Wight, PhD (Benaroya Research Institute)
This investigator leads a research program focused on the role that the extracellular matrix molecules, proteoglycans and hyaluronan, play in regulating vascular cell type and the regulation of extracellular matrix assembly. These pathways are fundamental to understanding the growth of new blood vessels in different tissues of the body, and have potential for direct tissue regeneration applications through the use of proteoglycan genes to bioengineer vascular tissue.

Ying Zheng, PhD (Bioengineering)
Dr. Zheng’s research focuses on understanding and engineering the fundamental structure and functions in living tissue and organ systems from nanometer, micrometer to centimeter scale.