Cole DeForest, PhD (Chemical Engineering)
While the potential for biomaterial-based strategies to improve and extend the quality of human health through tissue regeneration and the treatment of disease continues to grow, the majority of current strategies rely on outdated technology initially developed and optimized for starkly different applications. Therefore, the DeForest Group seeks to integrate the governing principles of rational design with fundamental concepts from material science, synthetic chemistry, and stem cell biology to conceptualize, create, and exploit next-generation materials to address a variety of health-related problems. We are currently interested in the development of new classes of user-programmable hydrogels whose biochemical and biophysical properties can be tuned in time and space over a variety of scales. Our work relies heavily on the utilization of cytocompatible bioorthogonal chemistries, several of which can be initiated with light and thereby confined to specific sub-volumes of a sample. By recapitulating the dynamic nature of the native tissue through 4D control of the material properties, these synthetic environments are utilized to probe and better understand basic cell function as well as to engineer complex heterogeneous tissue.

Anna Naumova, PhD (Radiology)
I have a long-standing interest to scientific research, biomedical imaging and data analytics. The main focus of my research is advancing pre-clinical and clinical cardiovascular studies at the University of Washington by implementation of the state-of-the-art non-invasive imaging technology for assessment of heart physiology, pathophysiology, myocardial perfusion and tissue composition. Specifically, I am interested in heart regeneration with human cardiomyocytes and non-invasive imaging of transplanted cells. We are developing quantitative non-contrast MRI techniques for characterization of myocardial tissue composition. This would allow identification of the fibrotic areas and myocardial graft without need of the MRI contrast agents. Our imaging approach is suitable to clinical studies on patients.