Hongxia Fu, PhD (Medicine/Hematology)
Our lab develops and applies single molecule biophysical methods to directly capture nanoscale events in biological processes such as protein folding/unfolding and biomolecular interactions, and explore the underlying molecular mechanisms in order to unveil the origin of disease. We also use human pluripotent stem cells to re-create key features of human vascular disease, such as thrombosis and bleeding disorders. Combining single-molecule manipulation tools, microfluidics, and stem cell biology, we are building a molecule-to-tissue scale model of human disease and aim to develop novel interventions, including both molecular and cellular therapies.
Christina Termini, PhD (Fred Hutch)
Our laboratory aims to understand how the adult blood system regenerates after damaging stressors like radiation and chemotherapy and how these processes can be hijacked during malignant transformation. Our research melds basic cell biology, regenerative medicine, and cancer biology and uses quantitative microscopy, flow cytometry, and transgenic mouse models to build a multi-scale understanding of blood regeneration. Our goal is to identify new mechanisms to support healthy blood recovery and target cancer stem cells to eventually translate for clinical applications.